Deep learning-based approach for COVID-19 spread prediction

被引:1
|
作者
Cumbane, Silvino Pedro [1 ,2 ]
Gidofalvi, Gyozo [1 ]
机构
[1] KTH Royal Inst Technol, Dept Urban Planning & Environm, Div Geoinformat, Teknikringen 10A, S-11428 Stockholm, Sweden
[2] Eduardo Mondlane Univ, Dept Math & Informat, Div Geog Informat Sci, Julius Nyerere St, Maputo 3453, Mozambique
关键词
COVID-19; spread; BiLSTM; Mobility data; Temperature data; Relative humidity data; Deep learning;
D O I
10.1007/s41060-024-00558-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spread prediction models are vital tools to help health authorities and governments fight against infectious diseases such as COVID-19. The availability of historical daily COVID-19 cases, in conjunction with other datasets such as temperature and humidity (which are believed to play a key role in the spread of the disease), has opened a window for researchers to investigate the potential of different techniques to model and thereby expand our understanding of the factors (e.g., interaction or exposure resulting from mobility) that govern the underlying dynamics of the spread. Traditionally, infectious diseases are modeled using compartmental models such as the SIR model. However, this model shortcoming is that it does not account for mobility, and the resulting mixing or interactions, which we conjecture are a key factor in the dynamics of the spread. Statistical analysis and deep learning-based approaches such as autoregressive integrated moving average (ARIMA), gated recurrent units, variational autoencoder, long short-term memory (LSTM), convolution LSTM, stacked LSTM, and bidirectional LSTM have been tested with COVID-19 historical data to predict the disease spread mainly in medium- and high-income countries with good COVID-19 testing capabilities. However, few studies have focused on low-income countries with low access to COVID-19 testing and, hence, highly biased historical datasets. In addition to this, the arguable best model (BiLSTM) has not been tested with an arguably good set of features (people mobility data, temperature, and relative humidity). Therefore, in this study, the multi-layer BiLSTM model is tested with mobility trend data from Google, temperature, and relative humidity to predict daily COVID-19 cases in low-income countries. The performance of the proposed multi-layer BiLSTM is evaluated by comparing its RMSE with the one from multi-layer LSTM (with the same settings as BiLSTM) in four developing countries namely Mozambique, Rwanda, Nepal, and Myanmar. The proposed multi-layer BiLSTM outperformed the multi-layer LSTM in all four countries. The proposed multi-layer BiLSTM was also evaluated by comparing its root mean-squared error (RMSE) with multi-layer LSTM models, ARIMA- and stacked LSTM-based models in eight countries, namely Italy, Turkey, Australia, Brazil, Canada, Egypt, Japan, and the UK. Finally, the proposed multi-layer BiLSTM model was evaluated at the city level by comparing its average relative error with the other four models, namely the LSTM-based model considering multi-layer architecture, Google Cloud Forecasting, the LSTM-based model with mobility data only, and the LSTM-based model with mobility, temperature, and relative humidity data for 7 periods (of 28 days each) in six highly populated regions in Japan, namely Tokyo, Aichi, Osaka, Hyogo, Kyoto, and Fukuoka. The proposed multi-layer BiLSTM model outperformed the multi-layer LSTM model and other previous models by up to 1.6 and 0.6 times in terms of RMSE and ARE, respectively. Therefore, the proposed model enables more accurate forecasting of COVID-19 cases and can support governments and health authorities in their decisions, mainly in developing countries with limited resources.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Deep learning-based approach for COVID-19 spread prediction
    Division of Geoinformatics, Department of Urban Planning and Environment, KTH Royal Institute of Technology, Teknikringen 10A, Stockholm
    114 28, Sweden
    不详
    3453, Mozambique
    Int. J. Data Sci. Anal.,
  • [2] A deep learning-based approach for predicting COVID-19 diagnosis
    Munshi, Raafat M.
    Khayyat, Mashael M.
    Ben Slama, Sami
    Khayyat, Manal Mahmoud
    HELIYON, 2024, 10 (07)
  • [3] Deep learning-based exchange rate prediction during the COVID-19 pandemic
    Abedin, Mohammad Zoynul
    Moon, Mahmudul Hasan
    Hassan, M. Kabir
    Hajek, Petr
    ANNALS OF OPERATIONS RESEARCH, 2021, 345 (2) : 1335 - 1386
  • [4] Deep Learning-Based Forecasting of COVID-19 in India
    Pillai, Punitha Kumaresa
    Durairaj, Devaraj
    Samivel, Kanthammal
    JOURNAL OF TESTING AND EVALUATION, 2022, 50 (01) : 225 - 242
  • [5] A multimodal deep learning-based drug repurposing approach for treatment of COVID-19
    Seyed Aghil Hooshmand
    Mohadeseh Zarei Ghobadi
    Seyyed Emad Hooshmand
    Sadegh Azimzadeh Jamalkandi
    Seyed Mehdi Alavi
    Ali Masoudi-Nejad
    Molecular Diversity, 2021, 25 : 1717 - 1730
  • [6] Supervised Machine Learning-Based Prediction of COVID-19
    Atta-ur-Rahman
    Sultan, Kiran
    Naseer, Iftikhar
    Majeed, Rizwan
    Musleh, Dhiaa
    Gollapalli, Mohammed Abdul Salam
    Chabani, Sghaier
    Ibrahim, Nehad
    Siddiqui, Shahan Yamin
    Khan, Muhammad Adnan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (01): : 21 - 34
  • [7] A multimodal deep learning-based drug repurposing approach for treatment of COVID-19
    Hooshmand, Seyed Aghil
    Zarei Ghobadi, Mohadeseh
    Hooshmand, Seyyed Emad
    Azimzadeh Jamalkandi, Sadegh
    Alavi, Seyed Mehdi
    Masoudi-Nejad, Ali
    MOLECULAR DIVERSITY, 2021, 25 (03) : 1717 - 1730
  • [8] Novel deep learning approach to model and predict the spread of COVID-19
    Ayris, Devante
    Imtiaz, Maleeha
    Horbury, Kye
    Williams, Blake
    Blackney, Mitchell
    See, Celine Shi Hui
    Shah, Syed Afaq Ali
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2022, 14
  • [9] A transfer learning-based deep learning approach for automated COVID-19 diagnosis with audio data
    Akgun, Devrim
    Kabakus, Abdullah Talha
    Senturk, Zehra Karapinar
    Senturk, Arafat
    Kucukkulahli, Enver
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2021, 29 : 2807 - 2823
  • [10] Transfer Learning-Based Approach for Identification of COVID-19
    Uttam, Atul Kumar
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 397 - 401