Optimized encoder-decoder cascaded deep convolutional network for leaf disease image segmentation

被引:0
|
作者
Femi, David [1 ]
Mukunthan, Manapakkam Anandan [1 ]
机构
[1] Vel Tech Rangarajan Dr Sagunthala R&D Inst Sci & T, Dept Comp Sci & Engn, Chennai, Tamil Nadu, India
关键词
Leaf disease classification; deep learning; DEDCNet; hyperparameters; dingo optimizer; exploration; exploitation;
D O I
10.1080/0954898X.2024.2326493
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, Deep Learning (DL) techniques are being used to automate the identification and diagnosis of plant diseases, thereby enhancing global food security and enabling non-experts to detect these diseases. Among many DL techniques, a Deep Encoder-Decoder Cascaded Network (DEDCNet) model can precisely segment diseased areas from the leaf images to differentiate and classify multiple diseases. On the other hand, the model training depends on the appropriate selection of hyperparameters. Also, this network structure has weak robustness with different parameters. Hence, in this manuscript, an Optimized DEDCNet (ODEDCNet) model is proposed for improved leaf disease image segmentation. To choose the best DEDCNet hyperparameters, a brand-new Dingo Optimization Algorithm (DOA) is included in this model. The DOA depends on the foraging nature of dingoes, which comprises exploration and exploitation phases. In exploration, it attains many predictable decisions in the search area, whereas exploitation enables exploring the best decisions in a provided area. The segmentation accuracy is used as the fitness value of each dingo for hyperparameter selection. By configuring the chosen hyperparameters, the DEDCNet is trained to segment the leaf disease regions. The segmented images are further given to the pre-trained Convolutional Neural Networks (CNNs) followed by the Support Vector Machine (SVM) for classifying leaf diseases. ODEDCNet performs exceptionally well on the PlantVillage and Betel Leaf Image datasets, attaining an astounding 97.33% accuracy on the former and 97.42% accuracy on the latter. Both datasets achieve noteworthy recall, F-score, Dice coefficient, and precision values: the Betel Leaf Image dataset shows values of 97.4%, 97.29%, 97.35%, and 0.9897; the PlantVillage dataset shows values of 97.5%, 97.42%, 97.46%, and 0.9901, all completed in remarkably short processing times of 0.07 and 0.06 seconds, respectively. The achieved outcomes are evaluated with the contemporary optimization algorithms using the considered datasets to comprehend the efficiency of DOA.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Iterative Deep Convolutional Encoder-Decoder Network for Medical Image Segmentation
    Kim, Jung Uk
    Kim, Hak Gu
    Ro, Yong Man
    [J]. 2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 685 - 688
  • [2] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
    Badrinarayanan, Vijay
    Kendall, Alex
    Cipolla, Roberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2481 - 2495
  • [3] Deep Convolutional Encoder-Decoder Network with Model Uncertainty for Semantic Segmentation
    Isobe, Shuya
    Arai, Shuichi
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA), 2017, : 365 - 370
  • [4] OverSegNet: A convolutional encoder-decoder network for image over-segmentation
    Li, Peng
    Ma, Wei
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2023, 107
  • [5] Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation
    Budak, Umit
    Guo, Yanhui
    Tanyildizi, Erkan
    Sengur, Abdulkadir
    [J]. MEDICAL HYPOTHESES, 2020, 134
  • [6] Deep Convolutional Encoder-Decoder for Myelin and Axon Segmentation
    Mesbah, Rassoul
    McCane, Brendan
    Mills, Steven
    [J]. PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2016, : 226 - 231
  • [7] Optimized deep encoder-decoder methods for crack segmentation
    Konig, Jacob
    Jenkins, Mark David
    Mannion, Mike
    Barrie, Peter
    Morison, Gordon
    [J]. DIGITAL SIGNAL PROCESSING, 2021, 108
  • [8] Tea Sprouts Segmentation via Improved Deep Convolutional Encoder-Decoder Network
    Qian, Chunhua
    Li, Mingyang
    Ren, Yi
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2020, E103D (02) : 476 - 479
  • [9] Deep Convolutional Encoder-Decoder Architecture for Neuronal Structure Segmentation
    Cui, Qingqing
    Pu, Peng
    Chen, Lu
    Zhao, Wenzheng
    Liu, Yu
    [J]. 2018 INTERNATIONAL CONFERENCE ON CONTROL, ARTIFICIAL INTELLIGENCE, ROBOTICS & OPTIMIZATION (ICCAIRO), 2018, : 242 - 247
  • [10] Optimizing Fully Convolutional Encoder-Decoder Network for Segmentation of Diabetic Eye Disease
    Khan, Abdul Qadir
    Sun, Guangmin
    Li, Yu
    Bilal, Anas
    Manan, Malik Abdul
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (02): : 2481 - 2504