NUMERICAL PREDICTION OF EFFECTIVE THERMAL CONDUCTIVITY OF CATALYST LAYERS IN PROTON EXCHANGE MEMBRANE FUEL CELLS

被引:0
|
作者
Zhang, Ruiyuan [1 ]
Li, Chen [1 ]
Fang, Wenzhen [1 ]
Tao, Wenquan [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermofluid Sci & Engn MOE, Xian 710049, Shaanxi, Peoples R China
关键词
Catalyst layer; Structure reconstruction; Lattice Boltzmann method; Effective thermal conductivity; Size effect; CONTACT RESISTANCE; SIMULATION; TRANSPORT; RECONSTRUCTION; MICROSTRUCTURE; ELECTRODES; COMPONENTS; MODEL;
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
The proton exchange membrane fuel cell (PEMFC) has attracted great attention due to its high efficiency, little pollution and low noise. Catalyst layer (CL) is one of the most crucial subassemblies in PEMFC. A deep understanding of transport processes inside the CL is of great importance for improving PEMFC performance. Due to its complex microscale structure and extremely thin thickness, there is still much work remaining for the prediction of effective thermal conductivity of CLs. Accurate prediction of the effective thermal conductivity of CL helps to improve the thermal and water management in PEMFC. Pore-scale numerical studies are performed in this study to investigate the heat transfer process in CLs. First, pore-scale structures of the CLs with multiple components are reconstructed. An aggregate shape control algorithm based on probability (ASCAP) is adopted, and then Pt particles and ionomer are distributed on the surface of carbon skeleton by quartet structure generation set (QSGS) method. Based on transmission electron microscope (TEM) measurement, the shape of reconstructed aggregate is selected as the largest proportional shape in the real structures. Then, the thermal lattice Boltzmann model is adopted to study heat transfer in the reconstructed structures and effective thermal conductivity is determined by the temperature field obtained. Effects of porosity, I/C ratio and size effects are investigated in detail. It is found that size effect must be considered for accurate prediction. The numerical results are proved to agree well with existing results from experiments and empirical solutions in the literatures.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Effective protonic and electronic conductivity of the catalyst layers in proton exchange membrane fuel cells
    Du, CY
    Shi, PF
    Cheng, XQ
    Yin, GP
    ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (05) : 435 - 440
  • [2] The influence of graphitization on the thermal conductivity of catalyst layers and temperature gradients in proton exchange membrane fuel cells
    Bock, Robert
    Karoliussen, Havard
    Pollet, Bruno G.
    Secanell, Marc
    Seland, Frode
    Stanier, Dave
    Burheim, Odne S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (02) : 1335 - 1342
  • [3] Prediction of the effective conductivity of Nafion in the catalyst layer of a proton exchange membrane fuel cell
    Hongsirikarn, Kitiya
    Mo, Xunhua
    Liu, Zhiming
    Goodwin, James G., Jr.
    JOURNAL OF POWER SOURCES, 2010, 195 (17) : 5493 - 5500
  • [4] Improved Cathode Catalyst Layers for Proton Exchange Membrane Fuel Cells
    Jayasayee, K.
    Zlotorowicz, A.
    Clos, D. P.
    Dahl, O.
    Thomassen, M. S.
    Dahl, P. I.
    Kjelstrup, S.
    POLYMER ELECTROLYTE FUEL CELLS 14, 2014, 64 (03): : 321 - 339
  • [5] Numerical determination of the effective thermal conductivity of fibrous materials. Application to proton exchange membrane fuel cell gas diffusion layers
    Veyret, D.
    Tsotridis, G.
    JOURNAL OF POWER SOURCES, 2010, 195 (05) : 1302 - 1307
  • [6] Structures of membrane electrode assembly catalyst layers for proton exchange membrane fuel cells
    Yu, Tzyy-Lung Leon
    Lin, Hsiu-Li
    Su, Po-Hao
    Wang, Guan-Wen
    Open Fuels and Energy Science Journal, 2012, 5 (01): : 28 - 38
  • [7] Model of catalyst layers for proton exchange membrane fuel cells: Progress and perspective
    Hao, Mingsheng
    Li, Yinshi
    He, Ya-Ling
    CHINESE SCIENCE BULLETIN-CHINESE, 2022, 67 (19): : 2192 - 2211
  • [8] Nanostructured gas diffusion and catalyst layers for proton exchange membrane fuel cells
    Kannan, Arunachala M.
    Veedu, Vinod P.
    Munukutla, Lakshmi
    Ghasemi-Nejhad, Mehrdad N.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (03) : B47 - B50
  • [9] The structure of catalyst layers and cell performance in proton exchange membrane fuel cells
    Inoue, H
    Daiguji, H
    Hihara, E
    JSME INTERNATIONAL JOURNAL SERIES B-FLUIDS AND THERMAL ENGINEERING, 2004, 47 (02) : 228 - 234
  • [10] Structure, Property, and Performance of Catalyst Layers in Proton Exchange Membrane Fuel Cells
    Jian Zhao
    Huiyuan Liu
    Xianguo Li
    Electrochemical Energy Reviews, 2023, 6