Predictive deep learning models for analyzing discrete fractional dynamics from noisy and incomplete data

被引:0
|
作者
Garibo-i-Orts, Oscar [1 ,2 ]
Lizama, Carlos [3 ]
Akgul, Ali [4 ,5 ]
Conejero, J. Alberto [1 ]
机构
[1] Inst Univ Matemat Pura & Aplicada, Univ Politecn Valencia, Valencia, Spain
[2] Valencian Int Univ VIU, GRID Grp Invest Ciencia Datos, Carrer Pintor Sorolla 21, Valencia 46002, Spain
[3] Univ Santiago de Chile, Dept Matemat & Ciencia Comp, Las Sophoras 173, Santiago, Chile
[4] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
[5] Siirt Univ, Art & Sci Fac, Dept Math, TR-56100 Siirt, Turkiye
关键词
Dynamical systems; Discrete fractional calculus; Wu-Baleanu model; Logistic map; Convolutional neural networks; LSTM networks; SYSTEMS;
D O I
10.1016/j.cjph.2024.04.010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the accuracy of machine learning methods for inferring the parameters of noisy fractional Wu-Baleanu trajectories with some missing initial terms. Our model is based on a combination of convolutional and recurrent neural networks (LSTM), which permits the extraction of characteristics from trajectories while preserving time dependency. We show that these approach exhibit good accuracy results despite the poor quality of the data.
引用
收藏
页码:1276 / 1285
页数:10
相关论文
共 50 条
  • [1] Learning of networked spreading models from noisy and incomplete data
    Wilinski, Mateusz
    Lokhov, Andrey Y.
    [J]. Physical Review E, 2024, 110 (05)
  • [2] Using noisy or incomplete data to discover models of spatiotemporal dynamics
    Reinbold, Patrick A. K.
    Gurevich, Daniel R.
    Grigoriev, Roman O.
    [J]. PHYSICAL REVIEW E, 2020, 101 (01)
  • [3] Efficient Graph Learning From Noisy and Incomplete Data
    Berger, Peter
    Hannak, Gabor
    Matz, Gerald
    [J]. IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2020, 6 : 105 - 119
  • [4] Robust Learning of Deep Predictive Models from Noisy and Imbalanced Software Engineering Datasets
    Li, Zhong
    Pan, Minxue
    Pei, Yu
    Zhang, Tian
    Wang, Linzhang
    Li, Xuandong
    [J]. PROCEEDINGS OF THE 37TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING, ASE 2022, 2022,
  • [5] Analyzing Trade Dynamics from Incomplete Data in Spatial Regional Models: a Maximum Entropy Approach
    Papalia, Rosa Bernardini
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2008, 1073 : 325 - 331
  • [6] Mixtures of regression models with incomplete and noisy data
    Jung, Byoung Cheol
    Cheon, Sooyoung
    Lim, Hwa Kyung
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (02) : 444 - 463
  • [7] Deep kernel learning of dynamical models from high-dimensional noisy data
    Nicolò Botteghi
    Mengwu Guo
    Christoph Brune
    [J]. Scientific Reports, 12
  • [8] Deep kernel learning of dynamical models from high-dimensional noisy data
    Botteghi, Nicolo
    Guo, Mengwu
    Brune, Christoph
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [9] Autonomous inference of complex network dynamics from incomplete and noisy data
    Gao, Ting-Ting
    Yan, Gang
    [J]. NATURE COMPUTATIONAL SCIENCE, 2022, 2 (03): : 160 - 168
  • [10] Autonomous inference of complex network dynamics from incomplete and noisy data
    Ting-Ting Gao
    Gang Yan
    [J]. Nature Computational Science, 2022, 2 : 160 - 168