Compact Convolutional Transformer for Bearing Remaining Useful Life Prediction

被引:0
|
作者
Jin, Zhongtian [1 ]
Chen, Chong [2 ]
Liu, Qingtao [3 ]
Syntetos, Aris [4 ]
Liu, Ying [1 ]
机构
[1] Cardiff Univ, Sch Engn, Dept Mech Engn, Cardiff CF24 3AA, Wales
[2] Guangdong Univ Technol, Guangdong Prov Key Lab Cyber Phys Syst, Guangzhou 510006, Peoples R China
[3] Changan Univ, Key Lab Rd Construct Technol & Equipment MOE, Xian 710064, Peoples R China
[4] Cardiff Univ, Cardiff Business Sch, PARC Inst Mfg Logist & Inventory, Cardiff CF10 3EU, Wales
关键词
Deep learning; Remaining useful life; Prognostic and health management; Transformer network; DIMENSIONALITY;
D O I
10.1007/978-3-031-52649-7_18
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
An accurate prediction of bearing remaining useful life (RUL) has become increasingly important for equipment maintenance with the development of monitoring technology and deep learning (DL). Although Transformers are currently the most commonly used unique learning algorithms for sequential data, concerns about their computational efficiency and cost exist. In this regard, Compact Convolutional Transformers (CCT) have emerged as a promising alternative that employs sequence pooling and replaces patch embedding with convolutional embedding to enhance computational efficiency while maintaining high prediction accuracy with smaller model sizes. This study proposes an RUL prediction modeling approach that utilizes the Continuous Wavelet Transform (CWT) to transform time-frequency domain features into images, subsequently fed into CCT to establish a highly accurate prediction model for the RUL of bearings. This study conducted experiments using the XJTU-SY rolling bearing dataset. The performance was evaluated in terms of root mean square error (RMSE) and maximum absolute error (MAE) by modifying the layer configuration and comparing with other state-of-the-art algorithms.
引用
收藏
页码:227 / 238
页数:12
相关论文
共 50 条
  • [1] Spatial attention-based convolutional transformer for bearing remaining useful life prediction
    Chen, Chong
    Wang, Tao
    Liu, Ying
    Cheng, Lianglun
    Qin, Jian
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (11)
  • [2] Conditional variational transformer for bearing remaining useful life prediction
    Wei, Yupeng
    Wu, Dazhong
    ADVANCED ENGINEERING INFORMATICS, 2024, 59
  • [3] Remaining useful life estimation of bearing using spatio-temporal convolutional transformer
    Zhu, De
    Lyu, Junwen
    Gao, Qingwei
    Lu, Yixiang
    Zhao, Dawei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (04)
  • [4] Remaining useful life prediction method of rolling bearing based on Transformer model
    Zhou Z.
    Liu L.
    Song X.
    Chen K.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (02): : 430 - 443
  • [5] A novel vision transformer network for rolling bearing remaining useful life prediction
    Hu, Aijun
    Zhu, Yancheng
    Liu, Suixian
    Xing, Lei
    Xiang, Ling
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (02)
  • [6] Temporal Convolutional Network with Attention Mechanism for Bearing Remaining Useful Life Prediction
    Wang, Shuai
    Zhang, Chao
    Lv, Da
    Zhao, Wentao
    PROCEEDINGS OF TEPEN 2022, 2023, 129 : 391 - 400
  • [7] PMBCT: The Probabilistic Multiscale Bayesian Convolutional Transformer for Trustworthy Remaining Useful Life Prediction
    Peng, Huachao
    Mao, Zehui
    Jiang, Bin
    IEEE TRANSACTIONS ON RELIABILITY, 2024,
  • [8] A weighted time embedding transformer network for remaining useful life prediction of rolling bearing
    Zhang, Mingyuan
    He, Chen
    Huang, Chengxuan
    Yang, Jianhong
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 251
  • [9] Rolling Bearing Remaining Useful Life Prediction Based on LSTM-Transformer Algorithm
    Tang, Xinglu
    Xi, Hui
    Chen, Qianqian
    Lin, Tian Ran
    PROCEEDINGS OF INCOME-VI AND TEPEN 2021: PERFORMANCE ENGINEERING AND MAINTENANCE ENGINEERING, 2023, 117 : 207 - 215
  • [10] Research on bearing remaining useful life prediction based on an MsTCN-Transformer model
    Deng F.
    Chen Z.
    Hao R.
    Yang S.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (04): : 279 - 287