Scalable deep learning framework for sentiment analysis prediction for online movie reviews

被引:0
|
作者
Atandoh, Peter [1 ]
Zhang, Fengli [1 ]
Al-antari, Mugahed A. [2 ]
Addo, Daniel [1 ]
Gu, Yeong Hyeon [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, North Jianshe Rd, Chengdu 610054, Sichuan, Peoples R China
[2] Sejong Univ, Coll Software & Convergence Technol, Daeyang AI Ctr, Dept Artificial Intelligence & Data Sci, Seoul 05006, South Korea
基金
新加坡国家研究基金会;
关键词
Sentiment analysis; Text representation; Convolutional neural network; Bidirectional long short-term memory; Attention; NEURAL-NETWORK; IDENTIFICATION; CLASSIFICATION; MODEL;
D O I
10.1016/j.heliyon.2024.e30756
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sentiment analysis has broad use in diverse real-world contexts, particularly in the online movie industry and other e-commerce platforms. The main objective of our work is to examine the word information order and analyze the content of texts by exploring the hidden meanings of words in online movie text reviews. This study presents an enhanced method of representing text and computationally feasible deep learning models, namely the PEW-MCAB model. The methodology categorizes sentiments by considering the full written text as a unified piece. The feature vector representation is processed using an enhanced text representation called Positional embedding and pretrained Glove Embedding Vector (PEW). The learning of these features is achieved by inculcating a multichannel convolutional neural network (MCNN), which is subsequently integrated into an Attention-based Bidirectional Long Short-Term Memory (AB) model. This experiment examines the positive and negative of online movie textual reviews. Four datasets were used to evaluate the model. When tested on the IMDB, MR (2002), MRC (2004), and MR (2005) datasets, the (PEW-MCAB) algorithm attained accuracy rates of 90.3%, 84.1%, 85.9%, and 87.1%, respectively, in the experimental setting. When implemented in practical settings, the proposed structure shows a great deal of promise for efficacy and competitiveness.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Sentiment Analysis of Online Movie Reviews using Machine Learning
    Steinke, Isaiah
    Wier, Justin
    Simon, Lindsay
    Seetan, Raed
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (09) : 618 - 624
  • [2] Sentiment Analysis of Persian Movie Reviews Using Deep Learning
    Dashtipour, Kia
    Gogate, Mandar
    Adeel, Ahsan
    Larijani, Hadi
    Hussain, Amir
    [J]. ENTROPY, 2021, 23 (05)
  • [3] Sentiment Analysis of Movie Reviews Based on Sentiment Dictionary and Deep Learning Models
    Liu, Caihong
    Liu, Changhui
    [J]. 2023 THE 6TH INTERNATIONAL CONFERENCE ON ROBOT SYSTEMS AND APPLICATIONS, ICRSA 2023, 2023, : 144 - 148
  • [4] Comparative Sentiment Analysis on a Set of Movie Reviews Using Deep Learning Approach
    Chakraborty, Koyel
    Bhattacharyya, Siddhartha
    Bag, Rajib
    Hassanien, Aboul Ella
    [J]. INTERNATIONAL CONFERENCE ON ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS (AMLTA2018), 2018, 723 : 311 - 318
  • [5] Sentiment analysis of Chinese online reviews using ensemble learning framework
    Jiafeng Huang
    Yun Xue
    Xiaohui Hu
    Huixia Jin
    Xin Lu
    Zhihuang Liu
    [J]. Cluster Computing, 2019, 22 : 3043 - 3058
  • [6] Sentiment analysis of Chinese online reviews using ensemble learning framework
    Huang, Jiafeng
    Xue, Yun
    Hu, Xiaohui
    Jin, Huixia
    Lu, Xin
    Liu, Zhihuang
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (02): : S3043 - S3058
  • [7] Sentiment analysis for Urdu online reviews using deep learning models
    Safder, Iqra
    Mehmood, Zainab
    Sarwar, Raheem
    Hassan, Saeed-Ul
    Zaman, Farooq
    Nawab, Rao Muhammad Adeel
    Bukhari, Faisal
    Abbasi, Rabeeh Ayaz
    Alelyani, Salem
    Aljohani, Naif Radi
    Nawaz, Raheel
    [J]. EXPERT SYSTEMS, 2021, 38 (08)
  • [8] Online Reviews Sentiment Analysis and Product Feature Improvement with Deep Learning
    Cao, Jihua
    Li, Jie
    Yin, Miao
    Wang, Yunfeng
    [J]. ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2023, 22 (08)
  • [9] An Improved Sentiment Analysis Of Online Movie Reviews Based On Clustering For Box-Office Prediction
    Nagamma, P.
    Pruthvi, H. R.
    Nisha, K. K.
    Shwetha, N. H.
    [J]. 2015 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION & AUTOMATION (ICCCA), 2015, : 933 - 937
  • [10] Sentiment Analysis on Movie Reviews
    Devi, B. Lakshmi
    Bai, V. Varaswathi
    Ramasubbareddy, Somula
    Govinda, K.
    [J]. EMERGING RESEARCH IN DATA ENGINEERING SYSTEMS AND COMPUTER COMMUNICATIONS, CCODE 2019, 2020, 1054 : 321 - 328