共 50 条
Therapeutic targeting of telomerase ameliorates experimental choroidal neovascularization
被引:0
|作者:
Kumar, Aman
[1
]
Nagasaka, Yosuke
[2
,3
]
Jayananthan, Vinodhini
[1
]
Zidan, Asmaa
[1
]
Heisler-Taylor, Tyler
[1
]
Ambati, Jayakrishna
[2
,3
]
Tamiya, Shigeo
[1
]
Kerur, Nagaraj
[1
,2
,3
,4
]
机构:
[1] Ohio State Univ, Dept Ophthalmol & Visual Sci, Wexner Med Ctr, Columbus, OH 43210 USA
[2] Univ Virginia, Sch Med, Ctr Adv Vis Sci, Charlottesville, VA USA
[3] Univ Virginia, Sch Med, Dept Ophthalmol, Charlottesville, VA USA
[4] Ohio State Univ, Wexner Med Ctr, Dept Microbial Infect & Immun, Columbus, OH USA
来源:
关键词:
AMD;
Choroidal neovascularization;
Telomerase;
TUMOR ANGIOGENESIS;
MESSENGER-RNA;
EXPRESSION;
CELLS;
SUPPRESSION;
LENGTH;
VEGF;
ASSOCIATION;
INHIBITION;
DEPLETION;
D O I:
10.1016/j.bbadis.2024.167156
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Choroidal neovascularization (CNV) is the principal driver of blindness in neovascular age-related macular degeneration (nvAMD). Increased activity of telomerase, has been associated with endothelial cell proliferation, survival, migration, and invasion in the context of tumor angiogenesis. Expanding on this knowledge, we investigated the role of telomerase in the development of CNV in mouse model. We observed increased gene expression and activity of telomerase in mouse CNV. Genetic deficiency of the telomerase components, telomerase reverse transcriptase (Tert) and telomerase RNA component (Terc) suppressed laser-induced CNV in mice. Similarly, a small molecule inhibitor of TERT (BIBR 1532), and antisense oligonucleotides (ASOs) targeting Tert and Terc reduced CNV growth. Bone marrow chimera studies suggested that telomerase activity in non-bone marrow-derived cells is crucial for the development of CNV. Comparison of BIBR 1532 with VEGF neutralizing therapeutic strategy in mouse revealed a comparable level of angiosuppressive activity. However, when BIBR and anti-VEGF antibodies were administered as a combination at sub-therapeutic doses, a statistically significant suppression of CNV was observed. These findings underscore the potential benefits of combining subtherapeutic doses of BIBR and anti-VEGF antibodies for developing newer therapeutic strategies for NV-AMD. Telomerase inhibition with BIBR 1532 suppressed induction of multiple cytokines and growth factors critical for neovascularization. In conclusion, our study identifies telomerase as a promising therapeutic target for treating neovascular disease of the eye and thus provides a proof of principle for further exploration of telomerase inhibition as a novel treatment strategy for nvAMD.
引用
收藏
页数:10
相关论文