On polynomial completeness properties of finite Mal'cev algebras

被引:0
|
作者
Rossi, Bernardo [1 ,2 ]
机构
[1] Johannes Kepler Univ Linz, Inst Algebra, Altenberger Str 69, A-4040 Linz, Austria
[2] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Sokolovska 49-83, Prague 8, Czech Republic
基金
奥地利科学基金会;
关键词
Polynomial interpolation; Mal'cev algebras; congruence identities;
D O I
10.1142/S0218196724500243
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Polynomial completeness results aim at characterizing those functions that are induced by polynomials. Each polynomial function is congruence preserving, but the opposite need not be true. A finite algebraic structure A is called strictly 1-affine complete if every unary partial function from a subset of A to A that preserves the congruences of A can be interpolated by a polynomial function of A. The problem of characterizing strictly 1-affine complete finite Mal'cev algebras is still open. In this paper, we extend the characterization by Aichinger and Idziak of strictly 1-affine complete expanded groups to finite congruence regular Mal'cev algebras.
引用
收藏
页码:655 / 687
页数:33
相关论文
共 50 条