Self-Supervised Interest Transfer Network via Prototypical Contrastive Learning for Recommendation

被引:0
|
作者
Sun, Guoqiang [1 ,2 ]
Shen, Yibin [2 ]
Zhou, Sijin [2 ]
Chen, Xiang [1 ]
Liu, Hongyan [1 ]
Wu, Chunming [1 ]
Lei, Chenyi [2 ]
Wei, Xianhui [2 ]
Fang, Fei [2 ]
机构
[1] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou, Peoples R China
[2] Alibaba Grp, Hangzhou, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-domain recommendation has attracted increasing attention from industry and academia recently. However, most existing methods do not exploit the interest invariance between domains, which would yield sub-optimal solutions. In this paper, we propose a cross-domain recommendation method: Self-supervised Interest Transfer Network (SITN), which can effectively transfer invariant knowledge between domains via prototypical contrastive learning. Specifically, we perform two levels of cross-domain contrastive learning: 1) instance-to-instance contrastive learning, 2) instance-to-cluster contrastive learning. Not only that, we also take into account users' multi-granularity and multi-view interests. With this paradigm, SITN can explicitly learn the invariant knowledge of interest clusters between domains and accurately capture users' intents and preferences. We conducted extensive experiments on a public dataset and a large-scale industrial dataset collected from one of the world's leading e-commerce corporations. The experimental results indicate that SITN achieves significant improvements over state-of-the-art recommendation methods. Additionally, SITN has been deployed on a micro-video recommendation platform, and the online A/B testing results further demonstrate its practical value. Supplement is available at: https://github.com/fanqieCoffee/SITN-Supplement.
引用
收藏
页码:4614 / 4622
页数:9
相关论文
共 50 条
  • [1] Self-supervised scientific document recommendation based on contrastive learning
    Shicheng Tan
    Tao Zhang
    Shu Zhao
    Yanping Zhang
    [J]. Scientometrics, 2023, 128 : 5027 - 5049
  • [2] Self-supervised scientific document recommendation based on contrastive learning
    Tan, Shicheng
    Zhang, Tao
    Zhao, Shu
    Zhang, Yanping
    [J]. SCIENTOMETRICS, 2023, 128 (09) : 5027 - 5049
  • [3] Self-supervised variational autoencoder towards recommendation by nested contrastive learning
    Jing Wang
    Jun Wu
    Caiyan Jia
    Zhifei Zhang
    [J]. Applied Intelligence, 2023, 53 : 18887 - 18897
  • [4] Self-supervised variational autoencoder towards recommendation by nested contrastive learning
    Wang, Jing
    Wu, Jun
    Jia, Caiyan
    Zhang, Zhifei
    [J]. APPLIED INTELLIGENCE, 2023, 53 (15) : 18887 - 18897
  • [5] Self-Supervised Learning for Recommendation
    Huang, Chao
    Xia, Lianghao
    Wang, Xiang
    He, Xiangnan
    Yin, Dawei
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 5136 - 5139
  • [6] SELF-SUPERVISED ACOUSTIC ANOMALY DETECTION VIA CONTRASTIVE LEARNING
    Hojjati, Hadi
    Armanfard, Narges
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3253 - 3257
  • [7] Adversarial Self-Supervised Contrastive Learning
    Kim, Minseon
    Tack, Jihoon
    Hwang, Sung Ju
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [8] A Survey on Contrastive Self-Supervised Learning
    Jaiswal, Ashish
    Babu, Ashwin Ramesh
    Zadeh, Mohammad Zaki
    Banerjee, Debapriya
    Makedon, Fillia
    [J]. TECHNOLOGIES, 2021, 9 (01)
  • [9] Self-Supervised Learning: Generative or Contrastive
    Liu, Xiao
    Zhang, Fanjin
    Hou, Zhenyu
    Mian, Li
    Wang, Zhaoyu
    Zhang, Jing
    Tang, Jie
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 857 - 876
  • [10] Boost Supervised Pretraining for Visual Transfer Learning: Implications of Self-Supervised Contrastive Representation Learning
    Sun, Jinghan
    Wei, Dong
    Ma, Kai
    Wang, Liansheng
    Zheng, Yefeng
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 2307 - 2315