Polymer design for solid-state batteries and wearable electronics

被引:0
|
作者
Stakem, Kieran G. [1 ]
Leslie, Freddie J. [1 ]
Gregory, Georgina L. [1 ]
机构
[1] Univ Oxford, Chem Res Lab, 12 Mansfield Rd, Oxford OX1 3TA, England
关键词
ELECTROCHEMICAL STABILITY WINDOW; SINGLE-ION; LITHIUM BATTERIES; MOLECULAR-WEIGHT; SILICON ANODES; POLY(ETHYLENE OXIDE); CONDUCTING POLYMER; RATIONAL DESIGN; ELECTROLYTES; BINDER;
D O I
10.1039/d4sc02501f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid-state batteries are increasingly centre-stage for delivering more energy-dense, safer batteries to follow current lithium-ion rechargeable technologies. At the same time, wearable electronics powered by flexible batteries have experienced rapid technological growth. This perspective discusses the role that polymer design plays in their use as solid polymer electrolytes (SPEs) and as binders, coatings and interlayers to address issues in solid-state batteries with inorganic solid electrolytes (ISEs). We also consider the value of tunable polymer flexibility, added capacity, skin compatibility and end-of-use degradability of polymeric materials in wearable technologies such as smartwatches and health monitoring devices. While many years have been spent on SPE development for batteries, delivering competitive performances to liquid and ISEs requires a deeper understanding of the fundamentals of ion transport in solid polymers. Advanced polymer design, including controlled (de)polymerisation strategies, precision dynamic chemistry and digital learning tools, might help identify these missing fundamental gaps towards faster, more selective ion transport. Regardless of the intended use as an electrolyte, composite electrode binder or bulk component in flexible electrodes, many parallels can be drawn between the various intrinsic polymer properties. These include mechanical performances, namely elasticity and flexibility; electrochemical stability, particularly against higher-voltage electrode materials; durable adhesive/cohesive properties; ionic and/or electronic conductivity; and ultimately, processability and fabrication into the battery. With this, we assess the latest developments, providing our views on the prospects of polymers in batteries and wearables, the challenges they might address, and emerging polymer chemistries that are still relatively under-utilised in this area. Delving into the tools empowering polymer chemists to design polymers for roles as solid electrolytes, multifunctional binders and active electrode materials in cutting-edge solid-state batteries and wearable devices.
引用
收藏
页码:10281 / 10307
页数:27
相关论文
共 50 条
  • [1] Rational Design of LLZO/Polymer Solid Electrolytes for Solid-State Batteries
    Liu, Xueping
    Xiao, Zhe
    Peng, Huarong
    Jiang, Dongting
    Xie, Honggui
    Sun, Yiling
    Zhong, Shengkui
    Qian, Zhengfang
    Wang, Renheng
    CHEMISTRY-AN ASIAN JOURNAL, 2022, 17 (24)
  • [2] A Composite Solid-state Polymer Electrolyte for Solid-state Sodium Batteries
    Zhang Q.
    Su X.
    Lu Y.
    Hu Y.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2020, 48 (07): : 939 - 946
  • [3] A review on design considerations in polymer and polymer composite solid-state electrolytes for solid Li batteries
    Kundu, Sumana
    Ein-Eli, Yair
    JOURNAL OF POWER SOURCES, 2023, 553
  • [4] Advances in solid-state fiber batteries for wearable bioelectronics
    Xiao, Xiao
    Yin, Junyi
    Shen, Sophia
    Che, Ziyuan
    Wan, Xiao
    Wang, Shaolei
    Chen, Jun
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2022, 26 (06):
  • [5] SOLID-STATE BATTERIES FOR ELECTRONICS AND MICROELECTRONICS APPLICATIONS.
    Hooper, A.
    Electric Vehicle Developments, 1987, 6 (03): : 99 - 101
  • [6] Towards flexible solid-state supercapacitors for smart and wearable electronics
    Dubal, Deepak P.
    Chodankar, Nilesh R.
    Kim, Do-Heyoung
    Gomez-Romero, Pedro
    CHEMICAL SOCIETY REVIEWS, 2018, 47 (06) : 2065 - 2129
  • [7] Design of networked solid-state polymer as artificial interlayer and solid polymer electrolyte for lithium metal batteries
    Subramani, Ramesh
    Pham, Minh-Nhat
    Lin, Yu-Hsing
    Hsieh, Chien-Te
    Lee, Yuh-Lang
    Jan, Jeng-Shiung
    Chiu, Chi-Cheng
    Teng, Hsisheng
    CHEMICAL ENGINEERING JOURNAL, 2022, 431
  • [8] Advanced Polymer Electrolytes in Solid-State Batteries
    Ningappa, Ningaraju Gejjiganahalli
    Madikere Raghunatha Reddy, Anil Kumar
    Zaghib, Karim
    Batteries, 2024, 10 (12)
  • [9] Macromolecular Design of Lithium Conductive Polymer as Electrolyte for Solid-State Lithium Batteries
    Meng, Nan
    Lian, Fang
    Cui, Guanglei
    SMALL, 2021, 17 (03)
  • [10] Structural Design of Composite Polymer Electrolytes for Solid-state Lithium Metal Batteries
    Liao, Wenchao
    Liu, Chen
    CHEMNANOMAT, 2021, 7 (11) : 1177 - 1187