Local fractional Laplace transform iterative method for solving Korteweg-de Vries equation with the local fractional derivative

被引:0
|
作者
Ojo, Gbenga O. [1 ]
Olaifa, John O. [2 ]
机构
[1] Cyprus West Univ, Fac Engn, Informat Syst Engn, Ismet Inonu Blv 29,Via Mersin 10, TR-99450 Gazimagusa, Turkiye
[2] Eastern Mediterranean Univ, Fac Engn, Dept Comp Engn, Ismet Inonu Blv Via Mersin 10, TR-99628 Gazimagusa, Turkiye
关键词
Fractional calculus; Laplace transform; local fractional Laplace transform iterative method; local fractional derivative; fractional Korteweg-de Vries equation;
D O I
10.1142/S2661335224500138
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The local fractional Korteweg-de Vries equations were considered in this paper. Series solutions for the linear and nonlinear case were examined using the local fractional Laplace transform iterative method. This proposed method is the coupling of the local fractional Laplace transform with the new iterative method. The existence and uniqueness of the solutions is considered using the principle of mathematical induction. Furthermore, illustrative examples were considered and the graphs are shown. The results obtained in this study reveal the benefit of this method and provide valuable insight into the behavior of complex phenomena in a precise and efficient manner with less computational work and implementation ease.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] THE LAPLACE SERIES SOLUTION FOR LOCAL FRACTIONAL KORTEWEG-DE VRIES EQUATION
    Ye, Shan-Shan
    Mohyud-Din, Syed Tauseef
    Belgacem, Fetid Bin Muhammad
    [J]. THERMAL SCIENCE, 2016, 20 : S867 - S870
  • [2] THE METHOD OF SEPARATION OF VARIABLES FOR LOCAL FRACTIONAL KORTEWEG-DE VRIES EQUATION
    Zhuang, Jia-Yu
    Qiao, Peng
    Li, Zhe-Min
    [J]. THERMAL SCIENCE, 2016, 20 : S859 - S862
  • [3] THE LOCAL FRACTIONAL SERIES EXPANSION SOLUTION FOR LOCAL FRACTIONAL KORTEWEG-DE VRIES EQUATION
    Zhang, Wei
    Xu, Kai-Li
    Lei, Yun
    [J]. THERMAL SCIENCE, 2016, 20 : S863 - S866
  • [4] FRACTAL COMPLEX TRANSFORM TECHNOLOGY FOR FRACTAL KORTEWEG-DE VRIES EQUATION WITHIN A LOCAL FRACTIONAL DERIVATIVE
    Xu, Jinze
    Chen, Zeng-Shun
    Wang, Jian-Hong
    Cui, Ping
    Bai, Yunru
    [J]. THERMAL SCIENCE, 2016, 20 : S841 - S845
  • [5] APPROXIMATE ANALYTICAL SOLUTION FOR MODIFIED KORTEWEG-de VRIES EQUATION WITH LOCAL FRACTIONAL DERIVATIVE VIA NEW ITERATIVE METHOD
    Deng, Shu-Xian
    Wang, Zhi-Jun
    [J]. THERMAL SCIENCE, 2020, 24 (06): : 4027 - 4032
  • [6] AN EXPLANATION OF LOCAL FRACTIONAL VARIATIONAL ITERATION METHOD AND ITS APPLICATION TO LOCAL FRACTIONAL MODIFIED KORTEWEG-DE VRIES EQUATION
    Wang, Yan
    Zhang, Yu-Feng
    Liu, Zhen-Jiang
    [J]. THERMAL SCIENCE, 2018, 22 (01): : 23 - 27
  • [7] A LOCAL FRACTIONAL HOMOTOPY PERTURBATION METHOD FOR SOLVING THE LOCAL FRACTIONAL KORTEWEG-DE VRIES EQUATIONS WITH NON-HOMOGENEOUS TERM
    Yang, Yong-Ju
    Wang, Shun-Qin
    [J]. THERMAL SCIENCE, 2019, 23 (03): : 1495 - 1501
  • [8] ON THE APPROXIMATE SOLUTIONS FOR A SYSTEM OF COUPLED KORTEWEG-DE VRIES EQUATIONS WITH LOCAL FRACTIONAL DERIVATIVE
    Jafari, Hossein
    Jassim, Hassan Kamil
    Baleanu, Dumitru
    Chu, Yu-ming
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (05)
  • [9] The functional variable method for solving the fractional Korteweg-de Vries equations and the coupled Korteweg-de Vries equations
    Matinfar, M.
    Eslami, M.
    Kordy, M.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (04): : 583 - 592
  • [10] On exact traveling-wave solutions for local fractional Korteweg-de Vries equation
    Yang, Xiao-Jun
    Tenreiro Machado, J. A.
    Baleanu, Dumitru
    Cattani, Carlo
    [J]. CHAOS, 2016, 26 (08)