Activating Nitrogen for Electrochemical Ammonia Synthesis via an Electrified Transition-Metal Dichalcogenide Catalyst

被引:1
|
作者
Aubry, Taylor J. [1 ]
Clary, Jacob M. [1 ]
Miller, Elisa M. [1 ]
Vigil-Fowler, Derek [1 ]
van de Lagemaat, Jao [1 ]
机构
[1] Natl Renewable Energy Lab, Mat Chem & Computat Sci Directorate, Golden, CO 80401 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2024年 / 128卷 / 17期
关键词
HYDROGEN EVOLUTION REACTION; SINGLE-ATOM CATALYSTS; ELECTROCATALYTIC REDUCTION; MOS2; NANOSHEETS; MONOLAYER MOS2; N-2; FIXATION; INSIGHTS; GROWTH; NH3;
D O I
10.1021/acs.jpcc.3c08230
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The complex interplay between local chemistry, the solvent microenvironment, and electrified interfaces frequently present in electrocatalytic reactions has motivated the development of quantum chemical methods that can accurately model these effects. Here, we predict the thermodynamics of the nitrogen reduction reaction (NRR) at sulfur vacancies in 1T '-phase MoS2 and highlight how the realistic treatment of potential within grand canonical density functional theory (GC-DFT) seamlessly captures the multiple competing effects of applied potential on a catalyst interface interacting with solvated molecules. In the canonical approach, the computational hydrogen electrode is widely used and predicts that adsorbed N-2 structure properties are potential-independent. In contrast, GC-DFT calculations show that reductive potentials activate N-2 toward electroreduction by controlling its back-bonding strength and lengthening the N-N triple bond while decreasing its bond order. Similar trends are observed for another classic back-bonding ligand in CO, suggesting that this mechanism may be broadly relevant to other electrochemistries involving back-bonded adsorbates. Furthermore, reductive potentials are required to make the subsequent N-2 hydrogenation steps favorable but simultaneously destabilizes the N-2 adsorbed structure resulting in a trade-off between the favorability of N-2 adsorption and the subsequent reaction steps. We show that GC-DFT facilitates modeling all these phenomena and that together they can have important implications in predicting electrocatalyst selectivity for the NRR and potentially other reactions.
引用
收藏
页码:7063 / 7072
页数:10
相关论文
共 50 条
  • [1] Transition-metal nitride halide dielectrics for transition-metal dichalcogenide transistors
    Rostami Osanloo, Mehrdad
    Saadat, Ali
    van de Put, Maarten L.
    Laturia, Akash
    Vandenberghe, William G.
    [J]. NANOSCALE, 2021, 14 (01) : 157 - 165
  • [2] Thermal properties of transition-metal dichalcogenide
    刘向军
    张永伟
    [J]. Chinese Physics B, 2018, 27 (03) : 16 - 23
  • [3] The electrochemical synthesis of transition-metal acetylacetonates
    Long, S. R.
    Browning, S. R.
    Lagowski, J. J.
    [J]. JOURNAL OF CHEMICAL EDUCATION, 2008, 85 (10) : 1429 - 1431
  • [4] Thermal properties of transition-metal dichalcogenide
    Liu, Xiangjun
    Zhang, Yong-Wei
    [J]. CHINESE PHYSICS B, 2018, 27 (03)
  • [5] Boosted electrochemical ammonia synthesis by high-percentage metallic transition metal dichalcogenide quantum dots
    Zhang, Jian
    Ling, Chongyi
    Zang, Wenjie
    Li, Xiaoxia
    Huang, Shaozhuan
    Li, Xue Liang
    Yan, Dong
    Kou, Zongkui
    Liu, Lei
    Wang, Jinlan
    Yang, Hui Ying
    [J]. NANOSCALE, 2020, 12 (20) : 10964 - 10971
  • [6] Enhancing Multifunctionalities of Transition-Metal Dichalcogenide Monolayers via Cation Intercalation
    Yu, Yifei
    Li, Guoqing
    Huang, Lujun
    Barrette, Andrew
    Ca, Yong-Qing
    Yu, Yiling
    Gundogdu, Kenan
    Zhang, Yong-Wei
    Cao, Linyou
    [J]. ACS NANO, 2017, 11 (09) : 9390 - 9396
  • [7] Valley splitting in the transition-metal dichalcogenide monolayer via atom adsorption
    Chen, Xiaofang
    Zhong, Liangshuai
    Li, Xiao
    Qi, Jingshan
    [J]. NANOSCALE, 2017, 9 (06) : 2188 - 2194
  • [8] Electrochemical nitrogen reduction to ammonia on transition metal nitrides
    Xu, Bingjun
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [9] Photocurrent generation in a metallic transition-metal dichalcogenide
    Mehmood, Naveed
    Rasouli, Hamid Reza
    Cakiroglu, Onur
    Kasirga, T. Serkan
    [J]. PHYSICAL REVIEW B, 2018, 97 (19)
  • [10] Sorting Transition-Metal Dichalcogenide Nanotubes by Centrifugation
    Yomogida, Yohei
    Liu, Zheng
    Ichinose, Yota
    Yanagi, Kazuhiro
    [J]. ACS OMEGA, 2018, 3 (08): : 8932 - 8936