A Marginalized Zero-Inflated Negative Binomial Model for Spatial Data: Modeling COVID-19 Deaths in Georgia

被引:0
|
作者
Mutiso, Fedelis [1 ]
Pearce, John L. [2 ]
Benjamin-Neelon, Sara E. [3 ]
Mueller, Noel T. [4 ,5 ]
Li, Hong [6 ]
Neelon, Brian [1 ,7 ]
机构
[1] Med Univ South Carolina, Dept Publ Hlth Sci, Div Biostat, Charleston, SC 29425 USA
[2] Med Univ South Carolina, Dept Publ Hlth Sci, Div Environm Hlth, Charleston, SC USA
[3] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Hlth Behav & Soc, Baltimore, MD USA
[4] Univ Colorado, Dept Pediat, Sch Med, Sect Nutr, Anschutz Med Campus, Aurora, CO USA
[5] Univ Colorado, Lifecourse Epidemiol Adipos & Diabet LEAD Ctr, Colorado Sch Publ Hlth, Anschutz Med Campus, Aurora, CO USA
[6] Univ Calif Davis, Dept Publ Hlth Sci, Div Biostat, Davis, CA USA
[7] Ralph H Johnson VA Med Ctr, Charleston Hlth Equ & Rural Outreach Innovat Ctr H, Charleston, SC 29401 USA
基金
美国国家卫生研究院;
关键词
conditionally autoregressive prior; marginalized models; Polya-gamma distribution; zero inflation; B-splines; POISSON REGRESSION; COUNT DATA;
D O I
10.1002/bimj.202300182
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Spatial count data with an abundance of zeros arise commonly in disease mapping studies. Typically, these data are analyzed using zero-inflated models, which comprise a mixture of a point mass at zero and an ordinary count distribution, such as the Poisson or negative binomial. However, due to their mixture representation, conventional zero-inflated models are challenging to explain in practice because the parameter estimates have conditional latent-class interpretations. As an alternative, several authors have proposed marginalized zero-inflated models that simultaneously model the excess zeros and the marginal mean, leading to a parameterization that more closely aligns with ordinary count models. Motivated by a study examining predictors of COVID-19 death rates, we develop a spatiotemporal marginalized zero-inflated negative binomial model that directly models the marginal mean, thus extending marginalized zero-inflated models to the spatial setting. To capture the spatiotemporal heterogeneity in the data, we introduce region-level covariates, smooth temporal effects, and spatially correlated random effects to model both the excess zeros and the marginal mean. For estimation, we adopt a Bayesian approach that combines full-conditional Gibbs sampling and Metropolis-Hastings steps. We investigate features of the model and use the model to identify key predictors of COVID-19 deaths in the US state of Georgia during the 2021 calendar year.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A Score Test for Testing a Marginalized Zero-Inflated Poisson Regression Model Against a Marginalized Zero-Inflated Negative Binomial Regression Model
    Gul Inan
    John Preisser
    Kalyan Das
    [J]. Journal of Agricultural, Biological and Environmental Statistics, 2018, 23 : 113 - 128
  • [2] A Score Test for Testing a Marginalized Zero-Inflated Poisson Regression Model Against a Marginalized Zero-Inflated Negative Binomial Regression Model
    Inan, Gul
    Preisser, John
    Das, Kalyan
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2018, 23 (01) : 113 - 128
  • [3] Early warning and predicting of COVID-19 using zero-inflated negative binomial regression model and negative binomial regression model
    Zhou, Wanwan
    Huang, Daizheng
    Liang, Qiuyu
    Huang, Tengda
    Wang, Xiaomin
    Pei, Hengyan
    Chen, Shiwen
    Liu, Lu
    Wei, Yuxia
    Qin, Litai
    Xie, Yihong
    [J]. BMC INFECTIOUS DISEASES, 2024, 24 (01)
  • [4] Marginalized zero-inflated negative binomial regression with application to dental caries
    Preisser, John S.
    Das, Kalyan
    Long, D. Leann
    Divaris, Kimon
    [J]. STATISTICS IN MEDICINE, 2016, 35 (10) : 1722 - 1735
  • [5] Zero-Inflated Time Series Model for Covid-19 Deaths in Kelantan Malaysia
    Ismail, Muhammad Hazim
    Roslee, Hasan Basri
    Yaacob, Wan Fairos Wan
    Sapri, Nik Nur Fatin Fatihah
    [J]. SOFT COMPUTING IN DATA SCIENCE, SCDS 2023, 2023, 1771 : 291 - 302
  • [6] Modeling count data with marginalized zero-inflated distributions
    Cummings, Tammy H.
    Hardin, James W.
    [J]. STATA JOURNAL, 2019, 19 (03): : 499 - 509
  • [7] Parameter estimations of zero-inflated negative binomial model with incomplete data
    Pho, Kim-Hung
    Lukusa, T. Martin
    [J]. APPLIED MATHEMATICAL MODELLING, 2024, 129 : 207 - 231
  • [8] Modeling citrus huanglongbing data using a zero-inflated negative binomial distribution
    de Almeida, Eudmar Paiva
    Janeiro, Vanderly
    Guedes, Terezinha Aparecida
    Mulati, Fabio
    Pedroza Carneiro, Jose Walter
    de Carvalho Nunes, William Mario
    [J]. ACTA SCIENTIARUM-AGRONOMY, 2016, 38 (03): : 299 - 306
  • [9] Zero-Inflated Time Series Modelling of COVID-19 Deaths in Ghana
    Tawiah, Kassim
    Iddrisu, Wahab Abdul
    Asampana Asosega, Killian
    [J]. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH, 2021, 2021
  • [10] Modeling shark bycatch: The zero-inflated negative binomial regression model with smoothing
    Minami, M.
    Lennert-Cody, C. E.
    Gao, W.
    Roman-Verdesoto, M.
    [J]. FISHERIES RESEARCH, 2007, 84 (02) : 210 - 221