Biomimetic 3D printing of composite structures with decreased cracking

被引:0
|
作者
Fan Du [1 ]
Kai Li [1 ,2 ,3 ]
Mingzhen Li [1 ]
Junyang Fang [1 ]
Long Sun [1 ]
Chao Wang [1 ]
Yexin Wang [1 ]
Maiqi Liu [1 ]
Jinbang Li [1 ]
Xiaoying Wang [4 ]
机构
[1] School of Mechanical Engineering and Mechanics,Ningbo University
[2] School of Mechanical and Electrical Engineering,China University of Mining and Technology
[3] Institute of Advanced Energy Storage Technology and Equipment,Ningbo University
[4] School of Civil and Environmental Engineering and Geography Science,Ningbo
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The development of tissue engineering and regeneration research has created new platforms for bone transplantation.However,the preparation of scaffolds with good fiber integrity is challenging,because scaffolds prepared by traditional printing methods are prone to fiber cracking during solvent evaporation.Human skin has an excellent natural heat-management system,which helps to maintain a constant body temperature through perspiration or blood-vessel constriction.In this work,an electrohydrodynamic-jet 3D-printing method inspired by the thermal-management system of skin was developed.In this system,the evaporation of solvent in the printed fibers can be adjusted using the temperature-change rate of the substrate to prepare 3D structures with good structural integrity.To investigate the solvent evaporation and the interlayer bonding of the fibers,finite-element analysis simulations of a three-layer microscale structure were carried out.The results show that the solvent-evaporation path is from bottom to top,and the strain in the printed structure becomes smaller with a smaller temperaturechange rate.Experimental results verified the accuracy of these simulation results,and a variety of complex 3D structures with high aspect ratios were printed.Microscale cracks were reduced to the nanoscale by adjusting the temperature-change rate from 2.5 to 0.5℃s-1.Optimized process parameters were selected to prepare a tissue engineering scaffold with high integrity.It was confirmed that this printed scaffold had good biocompatibility and could be used for bone-tissue regeneration.This simple and flexible 3D-printing method can also help with the preparation of a wide range of micro-and nanostructured sensors and actuators.
引用
收藏
页码:28 / 38
页数:11
相关论文
共 50 条
  • [1] Biomimetic 3D printing of composite structures with decreased cracking
    Du, Fan
    Li, Kai
    Li, Mingzhen
    Fang, Junyang
    Sun, Long
    Wang, Chao
    Wang, Yexin
    Liu, Maiqi
    Li, Jinbang
    Wang, Xiaoying
    NANOTECHNOLOGY AND PRECISION ENGINEERING, 2024, 7 (03)
  • [2] Composite 3D printing of biomimetic human teeth
    Cresswell-Boyes, A. J.
    Davis, G. R.
    Krishnamoorthy, M.
    Mills, D.
    Barber, A. H.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [3] Composite 3D printing of biomimetic human teeth
    A. J. Cresswell-Boyes
    G. R. Davis
    M. Krishnamoorthy
    D. Mills
    A. H. Barber
    Scientific Reports, 12
  • [4] 3D printing of ceramic composite with biomimetic toughening design
    Sun, Jinxing
    Yu, Shixiang
    James, Wade-Zhu
    Wang, Yue
    Qu, Hongqiao
    Zhao, Shuai
    Zhang, Rui
    Yang, Jinglei
    Binner, Jon
    Bai, Jiaming
    ADDITIVE MANUFACTURING, 2022, 58
  • [5] 3D printing biomimetic materials and structures for biomedical applications
    Yizhen Zhu
    Dylan Joralmon
    Weitong Shan
    Yiyu Chen
    Jiahui Rong
    Hanyu Zhao
    Siqi Xiao
    Xiangjia Li
    Bio-Design and Manufacturing , 2021, (02) : 405 - 428
  • [6] 3D printing biomimetic materials and structures for biomedical applications
    Zhu, Yizhen
    Joralmon, Dylan
    Shan, Weitong
    Chen, Yiyu
    Rong, Jiahui
    Zhao, Hanyu
    Xiao, Siqi
    Li, Xiangjia
    BIO-DESIGN AND MANUFACTURING, 2021, 4 (02) : 405 - 428
  • [7] 3D printing biomimetic materials and structures for biomedical applications
    Yizhen Zhu
    Dylan Joralmon
    Weitong Shan
    Yiyu Chen
    Jiahui Rong
    Hanyu Zhao
    Siqi Xiao
    Xiangjia Li
    Bio-Design and Manufacturing, 2021, 4 (02) : 405 - 428
  • [8] 3D printing biomimetic materials and structures for biomedical applications
    Yizhen Zhu
    Dylan Joralmon
    Weitong Shan
    Yiyu Chen
    Jiahui Rong
    Hanyu Zhao
    Siqi Xiao
    Xiangjia Li
    Bio-Design and Manufacturing, 2021, 4 : 405 - 428
  • [9] Manufacturing of Isogrid Composite Structures by 3D Printing
    Forcellese, Archimede
    Di Pompeo, Valerio
    Simoncini, Michela
    Vita, Alessio
    23RD INTERNATIONAL CONFERENCE ON MATERIAL FORMING, 2020, 47 : 1096 - 1100
  • [10] 3D printing and testing of composite isogrid structures
    Archimede Forcellese
    Michela Simoncini
    Alessio Vita
    Valerio Di Pompeo
    The International Journal of Advanced Manufacturing Technology, 2020, 109 : 1881 - 1893