Energy Estimates on Existence of Extremals for Trudinger–Moser Inequalities

被引:0
|
作者
Ya Min WANG
机构
[1] SchoolofMathematics,RenminUniversityofChina
关键词
D O I
暂无
中图分类号
O178 [不等式及其他];
学科分类号
摘要
Let Ω be a smooth bounded domain in R2, W01,2(Ω) be the standard Sobolev space. By the method of energy estimate developed by Malchiodi–Martinazzi(J. Eur. Math. Soc., 16, 893–908(2014)), Mancini–Martinazzi(Calc. Var. Partial Differential Equations, 56, 94(2017)) and Mancini–Thizy(J. Differential Equations, 266, 1051–1072(2019)), we reprove the results of Carleson–Chang(Bull. Sci. Math., 110, 113–127(1986)), Flucher(Comment. Math. Helv., 67, 471–497(1992)), Li(Acta Math. Sin. Engl. Ser., 22, 545–550(2006)) and Su(J. Math. Inequal., in press). Namely, for any real number α≤ 1, the supremum ■ can be achieved by some function v ∈ W01,2(Ω) with ║?v║2~2≤ 4π.
引用
收藏
页码:829 / 841
页数:13
相关论文
共 50 条