The Braided Product of Ockham Algebras

被引:0
|
作者
Fang Jie Department of Mathematics Zhongshau University Guangzhou China [510275 ]
机构
关键词
D O I
暂无
中图分类号
O153 [抽象代数(近世代数)];
学科分类号
070104 ;
摘要
<正> In this paper we introduce an algebraic concept of the product of Ockham algebrascalled the Braided product. We show that if Li ∈ MS(i=1,2,...,n)then the Braided product ofLi(i=1, 2,…,n) exists if and only if L1,...,L_n have isomorphic skeletons.
引用
收藏
页码:249 / 253
页数:5
相关论文
共 50 条
  • [1] The Braided Product of Ockham Algebras
    Fang Jie
    Acta Mathematica Sinica,English Series, 1996, (03) : 249 - 253
  • [2] Decoupling of tensor factors in cross product and braided tensor product algebras
    Fiore, G
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 807 - 810
  • [3] SIMPLE OCKHAM ALGEBRAS
    FANG JIE Department of Mathematics
    ChineseAnnalsofMathematics, 1996, (02) : 213 - 218
  • [4] Minimal Ockham algebras
    Silva, H. J.
    ALGEBRA UNIVERSALIS, 2012, 67 (04) : 393 - 395
  • [5] Minimal Ockham algebras
    H. J. Silva
    Algebra universalis, 2012, 67 : 393 - 395
  • [6] A subclass of Ockham algebras
    Jie Fang
    Zhong Ju Sun
    Acta Mathematica Sinica, English Series, 2012, 28 : 2115 - 2128
  • [7] Ockham algebras with pseudocomplementation
    Blyth, TS
    Fang, J
    Varlet, JC
    COMMUNICATIONS IN ALGEBRA, 1997, 25 (11) : 3605 - 3615
  • [8] A Subclass of Ockham Algebras
    Jie FANG
    Zhong Ju SUN
    Acta Mathematica Sinica, 2012, 28 (10) : 2115 - 2128
  • [9] Extended Ockham algebras
    Blyth, TS
    Fang, J
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (03) : 1271 - 1284
  • [10] A Subclass of Ockham Algebras
    Jie FANG
    Zhong Ju SUN
    Acta Mathematica Sinica,English Series, 2012, (10) : 2115 - 2128