一类非线性curl-curl问题柱对称基态解的存在性

被引:0
|
作者
吴晓琳
滕凯民
机构
[1] 太原理工大学数学学院
关键词
curl-curl算子; 变分方法; Nehari流形;
D O I
暂无
中图分类号
O175.2 [偏微分方程];
学科分类号
摘要
本文研究一类非线性curl-curl问题,在对位势V (x)和Q(x)进行合适的假设下证明了柱对称基态解的存在性.
引用
收藏
页码:1027 / 1037
页数:11
相关论文
共 10 条
  • [1] Nonlinear time-harmonic Maxwell equations in an anisotropic bounded medium
    Bartsch, Thomas
    Mederski, Jaroslaw
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (10) : 4304 - 4333
  • [2] Ground states of a nonlinear curl-curl problem in cylindrically symmetric media
    Bartsch, Thomas
    Dohnal, Tomas
    Plum, Michael
    Reichel, Wolfgang
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (05):
  • [3] Ground States of Time-Harmonic Semilinear Maxwell Equations in $${\mathbb{R}^3}$$ R 3 with Vanishing Permittivity.[J].Jarosław Mederski.Archive for Rational Mechanics and Analysis.2015, 2
  • [4] Ground and Bound State Solutions of Semilinear Time-Harmonic Maxwell Equations in a Bounded Domain
    Bartsch, Thomas
    Mederski, Jaroslaw
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (01) : 283 - 306
  • [5] MAGNETOSTATIC SOLUTIONS FOR A SEMILINEAR PERTURBATION OF THE MAXWELL EQUATIONS
    D'Aprile, Teresa
    Siciliano, Gaetano
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS, 2011, 16 (5-6) : 435 - 466
  • [6] Existence of static solutions of the semilinear Maxwell equations.[J].Antonio Azzollini;Vieri Benci;Teresa D’Aprile;Donato Fortunato.Ricerche di Matematica.2006, 2
  • [7] Towards a unified field theory for classical electrodynamics
    Benci, V
    Fortunato, D
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2004, 173 (03) : 379 - 414
  • [8] Direct calculation of permeability and permittivity for a left-handed metamaterial
    Smith, DR
    Vier, DC
    Kroll, N
    Schultz, S
    [J]. APPLIED PHYSICS LETTERS, 2000, 77 (14) : 2246 - 2248
  • [9] Self-trapping of an electromagnetic field and bifurcation from the essential spectrum.[J].C. A. Stuart.Archive for Rational Mechanics and Analysis.1991, 1
  • [10] The principle of symmetric criticality.[J].Richard S. Palais.Communications in Mathematical Physics.1979, 1