Let G be a graph. We use χ(G) and ω(G) to denote the chromatic number and clique number of G respectively. A P5 is a path on 5 vertices, and an HVN is a K4 together with one more vertex which is adjacent to exactly two vertices of K4. Combining with some known result, in this paper we show that if G is(P5, HVN)-free, then χ(G) ≤ max{min{16, ω(G) + 3}, ω(G) + 1}. This upper bound is almost sharp.