On the number of limit cycles in double homoclinic bifurcations

被引:0
|
作者
韩茂安
陈健
机构
[1] Department of Mathematics
[2] Shanghai Jiao Tong University
[3] Shanghai
[4] China
[5] Shanghai
关键词
D O I
暂无
中图分类号
学科分类号
摘要
<正> Let L be a double homoclinic loop of a Hamiltonian system on the plane. We obtain a condition under which L generates at most two large limit cycles by perturbations. We also give conditions for the existence of at most five or six limit cycles which appear near L under perturbations.
引用
收藏
页码:914 / 928
页数:15
相关论文
共 50 条
  • [1] On the number of limit cycles in double homoclinic bifurcations
    Han, M
    Chen, J
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2000, 43 (09): : 914 - 928
  • [2] On the number of limit cycles in double homoclinic bifurcations
    韩茂安
    陈健
    [J]. Science China Mathematics, 2000, (09) : 914 - 928
  • [3] On the number of limit cycles in double homoclinic bifurcations
    Maoan Han
    Jian Chen
    [J]. Science in China Series A: Mathematics, 2000, 43 : 914 - 928
  • [4] Bifurcations of limit cycles in a perturbed quintic Hamiltonian system with six double homoclinic loops
    Gao, Yong-xi
    Wu, Yu-hai
    Tian, Li-xin
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2008, 24 (02): : 313 - 328
  • [5] Bifurcations of Limit Cycles in A Perturbed Quintic Hamiltonian System with Six Double Homoclinic Loops
    Yong-xi Gao Yu-hai Wu Li-xin Tian Department of Mathematics
    [J]. Acta Mathematicae Applicatae Sinica, 2008, (02) : 313 - 328
  • [6] Bifurcations of limit cycles in a perturbed quintic Hamiltonian system with six double homoclinic loops
    Yong-xi Gao
    Yu-hai Wu
    Li-xin Tian
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2008, 24 : 313 - 328
  • [7] LIMIT CYCLES NEAR A DOUBLE HOMOCLINIC LOOP
    Yang Junmin Han Maoan (Dept.of Math.
    [J]. Annals of Applied Mathematics, 2007, (04) : 536 - 545
  • [8] Limit cycle bifurcations near double homoclinic and double heteroclinic in smooth
    Liu, Shanshan
    Han, Maoan
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 175
  • [9] THE NUMBER OF LIMIT CYCLES NEAR A DOUBLE HOMOCLINIC LOOP FOR A NEAR-HAMILTONIAN SYSTEM
    Xu, Xiaoyu
    Yang, Junmin
    Han, Tong
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (02): : 1111 - 1132
  • [10] Transverse bifurcations of homoclinic cycles
    Chossat, P
    Krupa, M
    Melbourne, I
    Scheel, A
    [J]. PHYSICA D, 1997, 100 (1-2): : 85 - 100