Asymptotic Stability of Periodic Solution for Compressible Viscous van der Waals Fluids

被引:0
|
作者
Jinyang HUANG [1 ]
Xiaoding SHI [1 ]
Xiaoping WANG [2 ]
Bing ZHANG [3 ]
机构
[1] School of Science,Beijing University of Chemical Technology
[2] Department of Mathematics,Hong Kong University of Science and Technology
[3] School of Mechanical and Electrical Engineering,Beijing University of Chemical
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the asymptotic stability of the periodic solution to a one-dimensional model system for the compressible viscous van der Waals fluid in Eulerian coordinates.If the initial density and initial momentum are suitably close to the average density and average momentum,then the solution is proved to tend toward a stationary solution as t →∞.
引用
收藏
页码:1113 / 1120
页数:8
相关论文
共 50 条
  • [1] Asymptotic stability of periodic solution for compressible viscous van der Waals fluids
    Jin-yang Huang
    Xiao-ding Shi
    Xiao-ping Wang
    Bing Zhang
    Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 1113 - 1120
  • [2] Asymptotic Stability of Periodic Solution for Compressible Viscous van der Waals Fluids
    Jin-yang HUANG
    Xiao-ding SHI
    Xiao-ping WANG
    Bing ZHANG
    Acta Mathematicae Applicatae Sinica, 2014, (04) : 1113 - 1120
  • [3] Asymptotic stability of periodic solution for compressible viscous van der Waals fluids
    Huang, Jin-yang
    Shi, Xiao-ding
    Wang, Xiao-ping
    Zhang, Bing
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (04): : 1113 - 1120
  • [4] Thermodynamic stability of periodic and quasiperiodic crystals within a van der Waals approximation
    Achrayah, R
    Baus, M
    PHYSICAL REVIEW E, 1998, 57 (04): : 4361 - 4367
  • [5] Asymptotic analysis of compressible, viscous and heat conducting fluids
    Feireisl, Eduard
    NONLINEAR DYNAMICS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 64 : 1 - 33
  • [6] Thermodynamic stability of periodic and quasiperiodic crystals within a van der Waals approximation
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 57 (04):
  • [7] Periodic structures in a van der Waals fluid
    Fife, PC
    Wang, XP
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 : 235 - 250
  • [8] Viscous hydrodynamics of excitons in van der Waals heterostructures
    Mantsevich, V.N.
    Glazov, M.M.
    Physical Review B, 2024, 110 (16)
  • [9] Unified treatment of asymptotic van der Waals forces
    Hult, E
    Rydberg, H
    Lundqvist, BI
    Langreth, DC
    PHYSICAL REVIEW B, 1999, 59 (07) : 4708 - 4713
  • [10] van der Waals interaction as a summable asymptotic series
    Perdew, John P.
    Ruzsinszky, Adrienn
    Sun, Jianwei
    Glindmeyer, Stephen
    Csonka, Gabor I.
    PHYSICAL REVIEW A, 2012, 86 (06):