Convergence ball and error analysis of Ostrowski-Traub’s method

被引:0
|
作者
BI Weihong WU Qingbiao REN Hongmin Department of Mathematics Zhejiang University Hangzhou China Department of Information and Electronics Hangzhou Radio and TV University Hangzhou China [1 ,1 ,2 ,1 ,310027 ,2 ,310012 ]
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Under the hypotheses that the second-order and third-order derivatives of a function are bounded, an estimate of the radius of the convergence ball of Ostrowski-Traub’s method is obtained. An error analysis is given which matches the convergence order of the method. Finally, two examples are provided to show applications of our theorem.
引用
收藏
页码:374 / 378
页数:5
相关论文
共 50 条
  • [1] Convergence ball and error analysis of Ostrowski-Traub’s method
    BI Wei-hong 1 WU Qing-biao 1 REN Hong-min 2 1 Department of Mathematics
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2010, (03) : 374 - 378
  • [2] Convergence ball and error analysis of Ostrowski-Traub's method
    Bi Wei-hong
    Wu Qing-biao
    Ren Hong-min
    [J]. APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2010, 25 (03) : 374 - 378
  • [3] Convergence ball and error analysis of Ostrowski-Traub’s method
    Wei-hong Bi
    Qing-biao Wu
    Hong-min Ren
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2010, 25 : 374 - 378
  • [4] OSTROWSKI-TRAUB NONLINEAR ITERATIVE METHODS ARE NOT OPTIMAL IN THE SENSE OF S-ORDER OF CONVERGENCE
    CHEN, D
    [J]. APPLIED MATHEMATICS LETTERS, 1992, 5 (03) : 51 - 52
  • [5] Convergence ball and error analysis of Muller's method
    Wu, Qingbiao
    Ren, Hongmin
    Bi, Weihong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 184 (02) : 464 - 470
  • [6] Improved Convergence Ball and Error Analysis of Muller's Method
    Argyros, Ioannis K.
    Gonzalez, Daniel
    Ren, Hongmin
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [7] The Convergence Ball and Error Analysis of the Relaxed Secant Method
    Lin, Rongfei
    Wu, Qingbiao
    Chen, Minhong
    Liu, Lu
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2017, 2017
  • [8] On the Convergence Ball and Error Analysis of the Modified Secant Method
    Lin, Rongfei
    Wu, Qingbiao
    Chen, Minhong
    Lei, Xuemin
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [9] Weaker convergence criteria for Traub's method
    Argyros, Ioannis K.
    [J]. JOURNAL OF COMPLEXITY, 2022, 69
  • [10] Damped Traub's method: Convergence and stability
    Cordero, Alicia
    Ferrero, Alfredo
    Torregrosa, Juan R.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2016, 119 : 57 - 68