Adaptive regularized ensemble for evolving data stream classification

被引:0
|
作者
Paim, Aldo M. [1 ]
Enembreck, Fabricio [1 ]
机构
[1] Pontificia Univ Catolica Parana PUCPR, R Imaculada Conceicao 1155, BR-80215901 Curitiba, PR, Brazil
关键词
Data stream mining; Regularized ensemble; Ensemble learning; Concept drift; Random subspaces; CLASSIFIERS; SELECTION;
D O I
10.1016/j.patrec.2024.02.026
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Extracting knowledge from data streams requires fast incremental algorithms that are able to handle unlimited processing and ever-changing data with finite memory. A strategy for this challenge is the use of ensembles owing to their ability to tackle concept drift and achieve highly accurate predictions. However, ensembles often require a lot of computational resources. In this study, we propose a novel ensemble-based classification algorithm for data streams, Adaptive Regularized Ensemble (ARE), with low demand for computational resources. The algorithm combines strategies that contribute to high prediction accuracy using only incorrectly classified instances into the training step, random-sized feature subspace for each ensemble element and classifier selection for final ensemble voting. After an extensive experimental study, ARE exhibited high predictive performance and outperformed state-of-the-art ensembles on data streams for real and synthetic datasets while requiring a low processing time and memory consumption.
引用
收藏
页码:55 / 61
页数:7
相关论文
共 50 条
  • [1] Adaptive random forests for evolving data stream classification
    Gomes, Heitor M.
    Bifet, Albert
    Read, Jesse
    Barddal, Jean Paul
    Enembreck, Fabricio
    Pfharinger, Bernhard
    Holmes, Geoff
    Abdessalem, Talel
    [J]. MACHINE LEARNING, 2017, 106 (9-10) : 1469 - 1495
  • [2] Adaptive random forests for evolving data stream classification
    Heitor M. Gomes
    Albert Bifet
    Jesse Read
    Jean Paul Barddal
    Fabrício Enembreck
    Bernhard Pfharinger
    Geoff Holmes
    Talel Abdessalem
    [J]. Machine Learning, 2017, 106 : 1469 - 1495
  • [3] Correction to: Adaptive random forests for evolving data stream classification
    Heitor M. Gomes
    Albert Bifet
    Jesse Read
    Jean Paul Barddal
    Fabrício Enembreck
    Bernhard Pfahringer
    Geoff Holmes
    Talel Abdessalem
    [J]. Machine Learning, 2019, 108 : 1877 - 1878
  • [4] Grid-based high performance ensemble classification for evolving data stream
    Qian, Quan
    Xie, Mengbo
    Xiao, Chaojie
    Zhang, Rui
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2016, 28 (16): : 4339 - 4351
  • [5] Improved Ensemble Classification for Evolving Data Streams
    Tian, Hui
    Wang, Lulu
    Shen, Hong
    Liew, Alan Wee-Chung
    [J]. IEEE INTELLIGENT SYSTEMS, 2022, 37 (01) : 38 - 50
  • [6] Evolving Big Data Stream Classification with MapReduce
    Haque, Ahsanul
    Parker, Brandon
    Khan, Latifur
    Thuraisingham, Bhavani
    [J]. 2014 IEEE 7TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (CLOUD), 2014, : 570 - 577
  • [7] CS-ARF: Compressed Adaptive Random Forests for Evolving Data Stream Classification
    Bahri, Maroua
    Gomes, Heitor Murilo
    Bifet, Albert
    Maniu, Silviu
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [8] Classifier Ensemble for Uncertain Data Stream Classification
    Pan, Shirui
    Wu, Kuan
    Zhang, Yang
    Li, Xue
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT I, PROCEEDINGS, 2010, 6118 : 488 - +
  • [9] An overview of complex data stream ensemble classification
    Zhang, Xilong
    Han, Meng
    Wu, Hongxin
    Li, Muhang
    Chen, Zhiqiang
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (02) : 3667 - 3695
  • [10] A Survey on Ensemble Learning for Data Stream Classification
    Gomes, Heitor Murilo
    Barddal, Jean Paul
    Enembreck, Fabricio
    Bifet, Albert
    [J]. ACM COMPUTING SURVEYS, 2017, 50 (02)