Detection and severity quantification of pulmonary embolism with 3D CT data using an automated deep learning-based artificial solution

被引:5
|
作者
Djahnine, Aissam [1 ,2 ]
Lazarus, Carole [1 ]
Lederlin, Mathieu [3 ]
Mule, Sebastien [4 ,5 ]
Wiemker, Rafael [1 ]
Si-Mohamed, Salim [6 ]
Jupin-Delevaux, Emilien [6 ]
Nempont, Olivier [1 ]
Skandarani, Youssef [1 ]
De Craene, Mathieu [1 ]
Goubalan, Segbedji [1 ]
Raynaud, Caroline [1 ]
Belkouchi, Younes [7 ,8 ]
Ben Afia, Amira [8 ]
Fabre, Clement [10 ]
Ferretti, Gilbert [11 ]
De Margerie, Constance [12 ,13 ]
Berge, Pierre [14 ]
Liberge, Renan [15 ]
Elbaz, Nicolas [16 ]
Blain, Maxime [17 ]
Brillet, Pierre -Yves [18 ]
Chassagnon, Guillaume [12 ,19 ]
Cadour, Farah [20 ]
Caramella, Caroline [21 ]
El Hajjam, Mostafa [22 ]
Boussouar, Samia [23 ]
Hadchiti, Joya [24 ]
Fablet, Xavier [3 ]
Khalil, Antoine [9 ]
Talbot, Hugues [8 ]
Luciani, Alain [4 ,5 ]
Lassau, Nathalie [24 ]
Boussel, Loic [2 ,6 ]
机构
[1] Philips Res France, F-92150 Suresnes, France
[2] Univ Claude Bernard Lyon 1, CREATIS, INSA Lyon, UJM St Etienne,NRS,Inserm,CREATIS UMR 5220,U1294, Lyon, France
[3] CHU Rennes, Dept Radiol, F-35000 Rennes, France
[4] Henri Mondor Univ Hosp, Med Imaging Dept, AP HP, Creteil, France
[5] Inserm, Team 18, U955, F-94000 Creteil, France
[6] Hosp Civils Lyon, Dept Radiol, F-69500 Lyon, France
[7] Univ Paris Saclay, BIOMAPS, CNRS,CEA,UMR 1281, Inserm,Lab Imagerie Biomed Multimodale Paris Sacl, F-94800 Villejuif, France
[8] Univ Paris Saclay, CVN Ctr vis Numer, OPTS Optimisat Imagerie & Sante, Inria,CentraleSupelec, F-91190 Gif Sur Yvette, France
[9] Hop Bichat Claude Bernard, Dept Radiol, APHP Nord, F-75018 Paris, France
[10] Ctr Hosp Laval, Dept Radiol, F-53000 Laval, France
[11] Univ Grenobles Alpes, Serv Radiol & Imagerie Med, F-38000 Grenoble, France
[12] Univ Paris Cite, F-75006 Paris, France
[13] Hop St Louis, AP HP, Dept Radiol, F-75010 Paris, France
[14] CHU Angers, Dept Radiol, Angers, France
[15] CHU Nantes, Dept Radiol, F-44000 Nantes, France
[16] Hop Europeen Georges Pompidou, Dept Radiol, AP HP, F-75015 Paris, France
[17] Hop Henri Mondor, AP HP, Dept Radiol, F-94000 Creteil, France
[18] Paris 13 Univ, Hop Avicenne, Dept Radiol, F-93000 Bobigny, France
[19] Hop Cochin, Dept Radiol, APHP, F-75014 Paris, France
[20] Hop Univ Timone, APHM, CEMEREM, F-13005 Marseille, France
[21] Grp Hosp Paris St Joseph, Dept Radiol, F-75015 Paris, France
[22] Hop Ambroise Pare Hosp, Dept Radiol, Team 3, UVSQ,UMR 1179,INSERM, Boulogne Billancourt, France
[23] Sorbonne Univ, Hop La Pitie Salpetriere, Unite Imagerie Cardiovasc & Thorac ICT, UMRS 1166, F-75013 Paris, France
[24] Univ Paris Saclay, Inst Gustave Roussy, Dept Imaging, F-94800 Villejuif, France
关键词
Artificial intelligence; Pulmonary embolism; Qanadli score; Retina U-net; R-CNN; INTELLIGENCE;
D O I
10.1016/j.diii.2023.09.006
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: The purpose of this study was to propose a deep learning-based approach to detect pulmonary embolism and quantify its severity using the Qanadli score and the right-to-left ventricle diameter (RV/LV) ratio on three-dimensional (3D) computed tomography pulmonary angiography (CTPA) examinations with limited annotations. Materials and methods: Using a database of 3D CTPA examinations of 1268 patients with image-level annotations, and two other public datasets of CTPA examinations from 91 (CAD-PE) and 35 (FUME-PE) patients with pixel-level annotations, a pipeline consisting of: (i), detecting blood clots; (ii), performing PE-positive versus negative classification; (iii), estimating the Qanadli score; and (iv), predicting RV/LV diameter ratio was followed. The method was evaluated on a test set including 378 patients. The performance of PE classification and severity quantification was quantitatively assessed using an area under the curve (AUC) analysis for PE classification and a coefficient of determination (R2) for the Qanadli score and the RV/LV diameter ratio. Results: Quantitative evaluation led to an overall AUC of 0.870 (95% confidence interval [CI]: 0.850-0.900) for PE classification task on the training set and an AUC of 0.852 (95% CI: 0.810-0.890) on the test set. Regression analysis yielded R2 value of 0.717 (95% CI: 0.668-0.760) and of 0.723 (95% CI: 0.668-0.766) for the Qanadli score and the RV/LV diameter ratio estimation, respectively on the test set. Conclusion: This study shows the feasibility of utilizing AI-based assistance tools in detecting blood clots and estimating PE severity scores with 3D CTPA examinations. This is achieved by leveraging blood clots and cardiac segmentations. Further studies are needed to assess the effectiveness of these tools in clinical practice. (c) 2023 Societe francaise de radiologie. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:97 / 103
页数:7
相关论文
共 50 条
  • [1] A Novel Deep Learning-Based (3D U-Net Model) Automated Pulmonary Nodule Detection Tool for CT Imaging
    Mahajan, Abhishek
    Agarwal, Rajat
    Agarwal, Ujjwal
    Ashtekar, Renuka M.
    Komaravolu, Bharadwaj
    Madiraju, Apparao
    Vaish, Richa
    Pawar, Vivek
    Punia, Vivek
    Patil, Vijay Maruti
    Noronha, Vanita
    Joshi, Amit
    Menon, Nandini
    Prabhash, Kumar
    Chaturvedi, Pankaj
    Rane, Swapnil
    Banwar, Priya
    Gupta, Sudeep
    CURRENT ONCOLOGY, 2025, 32 (02)
  • [2] Automated detection of pulmonary embolism from CT-angiograms using deep learning
    Heidi Huhtanen
    Mikko Nyman
    Tarek Mohsen
    Arho Virkki
    Antti Karlsson
    Jussi Hirvonen
    BMC Medical Imaging, 22
  • [3] Automated detection of pulmonary embolism from CT-angiograms using deep learning
    Huhtanen, Heidi
    Nyman, Mikko
    Mohsen, Tarek
    Virkki, Arho
    Karlsson, Antti
    Hirvonen, Jussi
    BMC MEDICAL IMAGING, 2022, 22 (01)
  • [4] Deep Learning-Based Algorithm for Automatic Detection of Pulmonary Embolism in Chest CT Angiograms
    Grenier, Philippe A.
    Ayobi, Angela
    Quenet, Sarah
    Tassy, Maxime
    Marx, Michael
    Chow, Daniel S.
    Weinberg, Brent D.
    Chang, Peter D.
    Chaibi, Yasmina
    DIAGNOSTICS, 2023, 13 (07)
  • [5] Deep Learning-based 3D Object Detection Using LiDAR and Image Data Fusion
    Bharadhwaj, Bizzam Murali
    Nair, Binoy B.
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [6] Generalizability assessment of COVID-19 3D CT data for deep learning-based disease detection
    Fallahpoor, Maryam
    Chakraborty, Subrata
    Heshejin, Mohammad Tavakoli
    Chegeni, Hossein
    Horry, Michael James
    Pradhan, Biswajeet
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 145
  • [7] Developing 2D and 3D Deep Learning-Based Models for an Automated Diagnosis of Idiopathic Pulmonary Fibrosis (IPF) Using Chest CT Scans
    Yu, W.
    Goldin, J.
    Zhou, H.
    Choi, Y.
    Teng, P.
    Brown, M.
    Kim, G.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2021, 203 (09)
  • [8] Deep Learning-Based 3D Printer Fault Detection
    Verana, Mark
    Nwakanma, Cosmas Ifeanyi
    Lee, Jae Min
    Kim, Dong Seong
    12TH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2021), 2021, : 99 - 102
  • [9] Automated, machine learning-based, 3D echocardiographic quantification of left ventricular mass
    Volpato, Valentina
    Mor-Avi, Victor
    Narang, Akhil
    Prater, David
    Goncalves, Alexandra
    Tamborini, Gloria
    Fusini, Laura
    Pepi, Mauro
    Patel, Amit R.
    Lang, Roberto M.
    ECHOCARDIOGRAPHY-A JOURNAL OF CARDIOVASCULAR ULTRASOUND AND ALLIED TECHNIQUES, 2019, 36 (02): : 312 - 319
  • [10] Automated Deep Learning-Based Detection of Osteoporotic Fractures in CT Images
    Yilmaz, Eren Bora
    Buerger, Christian
    Fricke, Tobias
    Sagar, Md Motiur Rahman
    Pena, Jaime
    Lorenz, Cristian
    Glueer, Claus-Christian
    Meyer, Carsten
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2021, 2021, 12966 : 376 - 385