Lightweight safety helmet detection algorithm using improved YOLOv5

被引:0
|
作者
Ren, Hongge [1 ]
Fan, Anni [1 ]
Zhao, Jian [1 ]
Song, Hairui [1 ]
Liang, Xiuman [2 ]
机构
[1] Tianjin Chengjian Univ, Sch Control & Mech Engn, Tianjin 300384, Peoples R China
[2] North China Univ Sci & Technol, Coll Elect Engn, Tangshan 063210, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Safety helmet detection; Distribution Shifting Convolution; Bottleneck Attention Mechanism; Lightweight; OBJECT DETECTION; RECOGNITION;
D O I
10.1007/s11554-024-01499-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In response to the challenges faced by existing safety helmet detection algorithms when applied to complex construction site scenarios, such as poor accuracy, large number of parameters, large amount of computation and large model size, this paper proposes a lightweight safety helmet detection algorithm based on YOLOv5, which achieves a balance between lightweight and accuracy. First, the algorithm integrates the Distribution Shifting Convolution (DSConv) layer and the Squeeze-and-Excitation (SE) attention mechanism, effectively replacing the original partial convolution and C3 modules, this integration significantly enhances the capabilities of feature extraction and representation learning. Second, multi-scale feature fusion is performed on the Ghost module using skip connections, replacing certain C3 module, to achieve lightweight and maintain accuracy. Finally, adjustments have been made to the Bottleneck Attention Mechanism (BAM) to suppress irrelevant information and enhance the extraction of features in rich regions. The experimental results show that improved model improves the mean average precision (mAP) by 1.0% compared to the original algorithm, reduces the number of parameters by 22.2%, decreases the computation by 20.9%, and the model size is reduced by 20.1%, which realizes the lightweight of the detection algorithm.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Improved Helmet Wear Detection Algorithm for YOLOv5
    Qiao, Yan
    Zhen, Tong
    Li, Zhihui
    [J]. Computer Engineering and Applications, 2023, 59 (11) : 203 - 211
  • [2] Research on improved algorithm for helmet detection based on YOLOv5
    Shan, Chun
    Liu, Hongming
    Yu, Yu
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [3] Research on improved algorithm for helmet detection based on YOLOv5
    Chun Shan
    HongMing Liu
    Yu Yu
    [J]. Scientific Reports, 13
  • [4] Improved YOLOv5 Lightweight Mask Detection Algorithm
    Liu, Chonghao
    Pan, Lihu
    Yang, Fan
    Zhang, Rui
    [J]. Computer Engineering and Applications, 2023, 59 (07) : 232 - 241
  • [5] Helmet wearing detection algorithm based on improved YOLOv5
    Liu, Yiping
    Jiang, Benchi
    He, Huan
    Chen, Zhijun
    Xu, Zhenfa
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01)
  • [6] Improved YOLOv5 Network Model and Application in Safety Helmet Detection
    Tan, Shilei
    Lu, Gonglin
    Jiang, Ziqiang
    Huang, Li
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SAFETY FOR ROBOTICS (ISR), 2021, : 330 - 333
  • [7] Lightweight object detection algorithm for robots with improved YOLOv5
    Liu, Gang
    Hu, Yanxin
    Chen, Zhiyu
    Guo, Jianwei
    Ni, Peng
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [8] Improved YOLOv5 Helmet Wearing Detection Algorithm for Small Targets
    Deng, Zhenrong
    Xiong, Yuxu
    Yang, Rui
    Chen, Yuren
    [J]. Computer Engineering and Applications, 2024, 60 (03) : 78 - 87
  • [9] Lightweight UAV Detection Algorithm Based on Improved YOLOv5
    Peng, Yi
    Tu, Xinyue
    Yang, Qingqing
    Li, Rui
    [J]. Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2023, 50 (12): : 28 - 38
  • [10] Lightweight Fire Detection Algorithm Based on Improved YOLOv5
    Zhang, Dawei
    Chen, Yutang
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (06) : 809 - 816