VeriDKG: A Verifiable SPARQL Query Engine for Decentralized Knowledge Graphs

被引:0
|
作者
Zhou, Enyuan [1 ]
Guo, Song [2 ]
Hong, Zicong [1 ]
Jensen, Christian S. [3 ]
Xiao, Yang [4 ]
Zhang, Dalin [3 ]
Liang, Jinwen [1 ]
Pei, Qingqi [4 ,5 ]
机构
[1] Hong Kong Polytech Univ, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
[3] Aalborg Univ, Aalborg, Denmark
[4] Xidian Univ, Xian, Peoples R China
[5] Guangzhou Lianrong Informat Technol Co Ltd, Guangzhou, Peoples R China
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2023年 / 17卷 / 04期
基金
中国国家自然科学基金;
关键词
DATABASE; BLOCKCHAIN; SYSTEMS; WEB;
D O I
10.14778/3636218.3636242
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The ability to decentralize knowledge graphs (KG) is important to exploit the full potential of the Semantic Web and realize the Web 3.0 vision. However, decentralization also renders KGs more prone to attacks with adverse effects on data integrity and query verifiability. While existing studies focus on ensuring data integrity, how to ensure query verifiability - thus guarding against incorrect, incomplete, or outdated query results - remains unsolved. We propose VeriDKG, the first SPARQL query engine for decentralized knowledge graphs (DKG) that offers both data integrity and query verifiability guarantees. The core of VeriDKG is the RGB-Trie, a new blockchain-maintained authenticated data structure (ADS) facilitating correctness proofs for SPARQL query results. VeriDKG enables verifiability of subqueries by gathering global index information on subgraphs using the RGB-Trie, which is implemented as a new variant of the Merkle prefix tree with an RGB color model. To enable verifiability of the final query result, the RGB-Trie is integrated with a cryptographic accumulator to support verifiable aggregation operations. A rigorous analysis of query verifiability in VeriDKG is presented, along with evidence from an extensive experimental study demonstrating its state-of-the-art query performance on the largeRDFbench benchmark.
引用
收藏
页码:912 / 925
页数:14
相关论文
共 50 条
  • [1] Optimizing SPARQL queries over decentralized knowledge graphs
    Aebeloe, Christian
    Montoya, Gabriela
    Hose, Katja
    [J]. SEMANTIC WEB, 2023, 14 (06) : 1121 - 1165
  • [2] Ontology-Mediated SPARQL Query Answering over Knowledge Graphs
    Xiao, Guohui
    Corman, Julien
    [J]. BIG DATA RESEARCH, 2021, 23
  • [3] gTop: An Efficient SPARQL Query Engine
    Zhou, Yuqi
    Zou, Lei
    Cao, Gang
    [J]. WEB AND BIG DATA, PT III, APWEB-WAIM 2022, 2023, 13423 : 446 - 450
  • [4] DESIGNING A SIMULATOR FOR DECENTRALIZED SPARQL QUERY PROCESSING
    Qi, Huang
    Jing, Zhou
    Wei, Yan
    [J]. 2014 4TH IEEE INTERNATIONAL CONFERENCE ON NETWORK INFRASTRUCTURE AND DIGITAL CONTENT (IEEE IC-NIDC), 2014, : 476 - 480
  • [5] Simulation and Evaluation of Decentralized SPARQL Query Processing
    Zhou, Jing
    Huang, Qi
    Yan, Wei
    [J]. 2014 INTERNATIONAL CONFERENCE ON IDENTIFICATION, INFORMATION AND KNOWLEDGE IN THE INTERNET OF THINGS (IIKI 2014), 2014, : 39 - 44
  • [6] Collaborative SPARQL Query Processing for Decentralized Semantic Data
    Grall, Arnaud
    Skaf-Molli, Hala
    Molli, Pascal
    Perrin, Matthieu
    [J]. DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2020, PT I, 2020, 12391 : 320 - 335
  • [7] Comunica: A Modular SPARQL Query Engine for the Web
    Taelman, Ruben
    Van Herwegen, Joachim
    Vander Sande, Miel
    Verborgh, Ruben
    [J]. SEMANTIC WEB - ISWC 2018, PT II, 2018, 11137 : 239 - 255
  • [8] SHOE: A SPARQL Query Engine Using MapReduce
    Li, Wenhai
    Chen, Biren
    Yao, Ruijiang
    Li, Yunpeng
    Wen, Weidong
    Cheung, Chungwai
    Li, Wanghong
    [J]. 2013 19TH IEEE INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS 2013), 2013, : 446 - 447
  • [9] DESERT: A Continuous SPARQL Query Engine for On-Demand Query Answering
    Karim, Farah
    Lytra, Ioanna
    Mader, Christian
    Auer, Soeren
    Vidal, Maria-Esther
    [J]. INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2018, 12 (03) : 373 - 397
  • [10] gStore: a graph-based SPARQL query engine
    Zou, Lei
    Oezsu, M. Tamer
    Chen, Lei
    Shen, Xuchuan
    Huang, Ruizhe
    Zhao, Dongyan
    [J]. VLDB JOURNAL, 2014, 23 (04): : 565 - 590