FAPAR retrieval from GF-5 hyperspectral images based on unified BRDF model

被引:0
|
作者
Tian, Dingfang [1 ,2 ]
Yang, Siqi [1 ,2 ]
Xu, Dawei [3 ]
Ren, Huazhong [1 ,2 ]
Fan, Wenjie [1 ,2 ]
Liu, Rongyuan [4 ]
机构
[1] Institution of Remote Sensing and Geographical Information System, Peking University, Beijing,100871, China
[2] Beijing Key Laboratory of Spatial Information Integration and Its Applications, Peking University, Beijing,100871, China
[3] Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing,100081, China
[4] China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing,100083, China
基金
中国国家自然科学基金;
关键词
Reflection;
D O I
10.11834/jrs.20210097
中图分类号
学科分类号
摘要
引用
收藏
页码:5 / 17
相关论文
共 50 条
  • [1] A neural networks based method for suspended sediment concentration retrieval from GF-5 hyperspectral images
    Liu Yi-Ming
    Zhang Lei
    Zhou Mei
    Liang Jian
    Wang Yan
    Sun Li
    Li Qing-Li
    [J]. JOURNAL OF INFRARED AND MILLIMETER WAVES, 2022, 41 (01) : 323 - 336
  • [2] Downscaling GF-5 hyperspectral images by fusing with Sentinel-2 images
    Wang, Qunming
    Zhang, Zhihao
    Zhang, Chengyuan
    [J]. National Remote Sensing Bulletin, 2023, 27 (08) : 1936 - 1950
  • [3] Retrieval of Heavy Metal Content in Soil Using GF-5 Satellite Images Based on GA-XGBoost Model
    Bai Han
    Yang Yun
    Cui Qinfang
    Jia Peng
    Wang Lixia
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (12)
  • [4] A Coupled BRDF CO2 Retrieval Method for the GF-5 GMI and Improvements in the Correction of Atmospheric Scattering
    Ye, Hanhan
    Shi, Hailiang
    Li, Chao
    Wang, Xianhua
    Xiong, Wei
    An, Yuan
    Wang, Yue
    Liu, Liangchen
    [J]. REMOTE SENSING, 2022, 14 (03)
  • [5] Fine mineral identification of GF-5 hyperspectral image
    Dong, Xinfeng
    Gan, Fuping
    Li, Na
    Yan, Bokun
    Zhang, Lei
    Zhao, Jiaqi
    Yu, Junchuan
    Liu, Rongyuan
    Ma, Yanni
    [J]. Yaogan Xuebao/Journal of Remote Sensing, 2020, 24 (04): : 454 - 464
  • [6] Comparison of fusion methods on GF-5 hyperspectral data
    Zhang L.
    Zhao X.
    Sun X.
    Huang H.
    Peng M.
    Cen Y.
    Tu K.
    [J]. National Remote Sensing Bulletin, 2022, 26 (04) : 632 - 645
  • [7] Estimation of soil lead content based on GF-5 hyperspectral images, considering the influence of soil environmental factors
    Songtao Ding
    Xia Zhang
    Weichao Sun
    Kun Shang
    Yibo Wang
    [J]. Journal of Soils and Sediments, 2022, 22 : 1431 - 1445
  • [8] Estimation of soil lead content based on GF-5 hyperspectral images, considering the influence of soil environmental factors
    Ding, Songtao
    Zhang, Xia
    Sun, Weichao
    Shang, Kun
    Wang, Yibo
    [J]. JOURNAL OF SOILS AND SEDIMENTS, 2022, 22 (05) : 1431 - 1445
  • [9] Research on coal gangue recognition of GF-5 hyperspectral image
    Dong, Xinfeng
    Li, Na
    Gan, Fuping
    Yang, Jinzhong
    Yao, Weiling
    [J]. AOPC 2021: OPTICAL SPECTROSCOPY AND IMAGING, 2021, 12064
  • [10] Forest Classification Based on GF-5 Hyperspectral Remote Sensing Data in Northeast China
    Gong, Zheng
    Gu, Lingjia
    Ren, Ruizhi
    Yang, Shuting
    [J]. EARTH OBSERVING SYSTEMS XXV, 2020, 11501