Estimation of water quality index using modern-day machine learning algorithms

被引:0
|
作者
Gupta, Piyush [1 ]
Samui, Pijush [1 ]
Quaff, A. R. [1 ]
机构
[1] Natl Inst Technol Patna, Dept Civil Engn, Patna, Bihar, India
关键词
CNN; DNN; RNN; water quality index; machine learning; ADAPTIVE REGRESSION SPLINES; COMPRESSION INDEX;
D O I
10.1007/s12046-024-02545-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Many human-made activities currently pollute groundwater supplies, with mining operations playing a substantial role in this degradation. In this study, water quality index (WQI) was calculated and forecasted for groundwater in gold mining sites of Kolar Gold Fields, Karnataka, using several water quality criteria and modern-day soft computing approaches. Specifically, three sophisticated deep learning models: convolution neural network (CNN), deep neural network (DNN), and recurrent neural network were used to estimate the WQI using various water quality metrics. The outcomes of these models were also compared with three widely used soft computing models namely support vector machine (SVM), least-square support vector machine (LS-SVM), and artificial neural network. Experimental results reveals that the developed CNN model outperform other two models with R2 values of 0.9998 and 0.9996 in the training and testing phases, respectively. The RMSE values of the CNN model were determined to be 0.0034 and 0.0038 in the training and testing phases, respectively. As per the results, the developed CNN model can be used as alternate tool for rapid water quality monitoring.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Sea Water Quality Estimation Using Machine Learning Algorithms
    Oh, Haeng Yeol
    Jeong, Myeong-Hun
    Jeon, Seung Bae
    Lee, Tae Young
    Kim, Gun
    Youm, Minkyo
    [J]. JOURNAL OF COASTAL RESEARCH, 2021, : 424 - 428
  • [2] Water Quality Index (WQI) Prediction Using Machine Learning Algorithms
    Kularbphettong, Kunyanuth
    Waraporn, Phanu
    Raksuntorn, Nareenart
    Vivhivanives, Rujijan
    Sangsuwon, Chanyapat
    Boonseng, Chongrag
    [J]. 2023 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE, CSCI 2023, 2023, : 383 - 387
  • [3] Machine Learning Algorithms for Predicting the Water Quality Index
    Hussein, Enas E.
    Baloch, Muhammad Yousuf Jat
    Nigar, Anam
    Abualkhair, Hussain F.
    Aldawood, Faisal Khaled
    Tageldin, Elsayed
    [J]. WATER, 2023, 15 (20)
  • [4] Efficient Prediction of Water Quality Index (WQI) Using Machine Learning Algorithms
    Md. Mehedi Hassan
    Md. Mahedi Hassan
    Laboni Akter
    Md. Mushfiqur Rahman
    Sadika Zaman
    Khan Md. Hasib
    Nusrat Jahan
    Raisun Nasa Smrity
    Jerin Farhana
    M. Raihan
    Swarnali Mollick
    [J]. Human-Centric Intelligent Systems, 2021, 1 (3-4): : 86 - 97
  • [5] Groundwater Quality Assessment and Irrigation Water Quality Index Prediction Using Machine Learning Algorithms
    Hussein, Enas E.
    Derdour, Abdessamed
    Zerouali, Bilel
    Almaliki, Abdulrazak
    Wong, Yong Jie
    los Santos, Manuel Ballesta-de
    Ngoc, Pham Minh
    Hashim, Mofreh A.
    Elbeltagi, Ahmed
    [J]. WATER, 2024, 16 (02)
  • [6] Water quality classification using machine learning algorithms
    Nasir, Nida
    Kansal, Afreen
    Alshaltone, Omar
    Barneih, Feras
    Sameer, Mustafa
    Shanableh, Abdallah
    Al-Shamma'a, Ahmed
    [J]. JOURNAL OF WATER PROCESS ENGINEERING, 2022, 48
  • [7] Water Quality Classification Using Machine Learning Algorithms
    Alnaqeb, Reem
    Alketbi, Khuloud
    Alrashdi, Fatema
    Ismail, Heba
    [J]. 2022 IEEE/ACS 19TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2022,
  • [8] Robust machine learning algorithms for predicting coastal water quality index
    Uddin, Md Galal
    Nash, Stephen
    Diganta, Mir Talas Mahammad
    Rahman, Azizur
    Olbert, Agnieszka I.
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 321
  • [9] Learning the ropes in the modern-day cruise industry
    Hays, S
    [J]. WORKFORCE, 1999, 78 (08): : 102 - 103
  • [10] Evaluation of Empirical and Machine Learning Algorithms for Estimation of Coastal Water Quality Parameters
    Nazeer, Majid
    Bilal, Muhammad
    Alsahli, Mohammad M. M.
    Shahzad, Muhammad Imran
    Waqas, Ahmad
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2017, 6 (11)