Temporal High-Order Accurate Numerical Scheme for the Landau-Lifshitz-Gilbert Equation

被引:1
|
作者
He, Jiayun [1 ]
Yang, Lei [1 ]
Zhan, Jiajun [1 ]
机构
[1] Macau Univ Sci & Technol, Fac Innovat Engn, Sch Comp Sci & Engn, Macau, Peoples R China
关键词
Gauss-Legendre quadrature; geometric property; Landau-Lifshitz-Gilbert equation; micromagnetics; GEOMETRIC INTEGRATION; MAGNETORESISTANCE;
D O I
10.3390/math12081179
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a family of temporal high-order accurate numerical schemes for the Landau-Lifshitz-Gilbert (LLG) equation is proposed. The proposed schemes are developed utilizing the Gauss-Legendre quadrature method, enabling them to achieve arbitrary high-order time discretization. Furthermore, the geometrical properties of the LLG equation, such as the preservation of constant magnetization magnitude and the Lyapunov structure, are investigated based on the proposed discrete schemes. It is demonstrated that the magnetization magnitude remains constant with an error of (2p+3) order in time when utilizing a (2p+2)th-order discrete scheme. Additionally, the preservation of the Lyapunov structure is achieved with a second-order error in the temporal step size. Numerical experiments and simulations effectively verify the performance of our proposed algorithm and validate our theoretical analysis.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Numerical methods for the Landau-Lifshitz-Gilbert equation
    Bañas, L
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2005, 3401 : 158 - 165
  • [2] Numerical analysis of an explicit approximation scheme for the Landau-Lifshitz-Gilbert equation
    Bartels, Soren
    Ko, Joy
    Prohl, Andreas
    MATHEMATICS OF COMPUTATION, 2008, 77 (262) : 773 - 788
  • [3] An iterative approximation scheme for the Landau-Lifshitz-Gilbert equation
    Cimrák, I
    Slodicka, M
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 169 (01) : 17 - 32
  • [4] Fractional Landau-Lifshitz-Gilbert equation
    Verstraten, R. C.
    Ludwig, T.
    Duine, R. A.
    Smith, C. Morais
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [5] Numerical analysis of the Landau-Lifshitz-Gilbert equation with inertial effects
    RUGGERI, M. I. C. H. E. L. E.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (04) : 1199 - 1222
  • [6] STOCHASTIC CONTROL OF THE LANDAU-LIFSHITZ-GILBERT EQUATION
    Brzeźniak, Zdzislaw
    Gokhale, Soham
    Manna, Utpal
    arXiv, 2023,
  • [7] Retardation effects in the Landau-Lifshitz-Gilbert equation
    Bose, Thomas
    Trimper, Steffen
    PHYSICAL REVIEW B, 2011, 83 (13):
  • [8] Stochastic homogenization of the Landau-Lifshitz-Gilbert equation
    Alouges, Francois
    de Bouard, Anne
    Merlet, Benoit
    Nicolas, Lea
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2021, 9 (04): : 789 - 818
  • [9] Periodic solutions for the Landau-Lifshitz-Gilbert equation
    Huber, Alexander
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (05) : 2462 - 2484
  • [10] Numerical integration of Landau-Lifshitz-Gilbert equation based on the midpoint rule
    d'Aquino, M
    Serpico, C
    Miano, G
    Mayergoyz, ID
    Bertotti, G
    JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)