High performance ultra-thin vapor chamber by reducing liquid film and enhancing capillary wicking

被引:5
|
作者
Zhang, Shiwei [1 ]
Liu, Hang [1 ]
Shao, Changkun [1 ]
Yang, Fan [1 ]
Wang, Zhiwei [1 ]
Tang, Yong [1 ]
Chen, Gong [2 ]
机构
[1] South China Univ Technol, Sch Mech & Automot Engn, Intelligent Mfg Engn Lab Funct Struct & Device Gua, Guangzhou 510640, Peoples R China
[2] City Univ Hong Kong, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Ultra-thin vapor chamber; Composite mesh wick; Two-phase flow characteristics; Heat transfer performance; HEAT-PIPE; FABRICATION;
D O I
10.1016/j.applthermaleng.2024.122813
中图分类号
O414.1 [热力学];
学科分类号
摘要
Ultra-thin vapor chambers (UTVCs) show great potential in cooling compact and high-power electronic devices and improving efficiency for energy systems. However, the two-phase flow heat transfer inside UTVCs remains unclear, particularly for those with steam chamber thicknesses of less than 0.4 mm. In this study, the two-phase flow characteristics inside UTVCs with a steam chamber thickness of 0.2 mm are investigated by conducting visualization experiments. Wettability and capillary wicking tests were also carried out to optimize the wicks. The results show that the composite mesh wick enables optimum heat transfer performance for UTVCs due to enhanced capillary wicking, reduced liquid film in vapor channels, and promoted evaporation and boiling. Then UTVCs at a thickness of 0.35 mm with different wicks are fabricated and tested by water cooling and natural convection heat dissipation experiments. The optimum UTVC exhibits the highest effective thermal conductivity of 12,454 W/mK at a heat input power of 3 W, indicating its powerful advantages for the heat dissipation of electronics in limited space. This study sheds light on the unidentified mechanism of two-phase flow inside extremely thin vapor chambers and guides the future design of high-performance UTVCs for cooling compact power devices.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Measurement of Performance Characterization of Ultra-Thin Vapor Chamber
    Lin, Wei-Keng
    Zhang, Wen-Hua
    Huang, Chien
    Tsai, Ching-Huang
    Hsaio, Kenny
    THIRTY-SIXTH ANNUAL SEMICONDUCTOR THERMAL MEASUREMENT, MODELING AND MANAGEMENT SYMPOSIUM (SEMI-THERM 2020), 2020, : 97 - 104
  • [2] Effect of laser ablation surface modification on the capillary performance of the wick structure for ultra-thin vapor chamber
    Yu, Jiu
    Fang, Wenqi
    Hu, Guoliang
    Liu, Ying
    Wu, Yigen
    Peng, Ling
    Li, Yong
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 241
  • [3] Rice-inspired oriented copper fiber wick with excellent capillary performance for ultra-thin vapor chamber
    Wang, Junxiang
    Tang, Yong
    Huang, Haoyi
    Xi, Xiaoqian
    Li, Hongming
    Yan, Caiman
    Zhang, Shiwei
    APPLIED THERMAL ENGINEERING, 2024, 236
  • [4] Analysis of heat transfer performance and vapor-liquid meniscus shape of ultra-thin vapor chamber with supporting columns
    Li, Deqiang
    Huang, Zhe
    Zhao, Jing
    Jian, Qifei
    Chen, Yangyang
    APPLIED THERMAL ENGINEERING, 2021, 193
  • [5] A novel ultra-thin vapor chamber for heat dissipation in ultra-thin portable electronic devices
    Huang, Guangwen
    Liu, Wangyu
    Luo, Yuanqiang
    Li, Yong
    APPLIED THERMAL ENGINEERING, 2020, 167 (167)
  • [6] High performance and reliable ultra-thin vapor chamber via an optimised second vacuuming and sealing process
    Zhang, Shiwei
    Liu, Derong
    Huang, Haozhou
    Nie, Cong
    Tang, Yong
    Yuan, Wei
    Chen, Gong
    APPLIED THERMAL ENGINEERING, 2024, 241
  • [7] Experimental study on the thermal management performance of battery with ultra-thin vapor chamber under liquid cooling condition
    Li, Rui
    Gan, Yunhua
    Liang, Jialin
    Yi, Feng
    Li, Yong
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 240
  • [8] Heat transfer performance analysis of an ultra-thin aluminum vapor chamber with serrated microgrooves
    He, Guochong
    Sheng, Yuxuan
    Ye, Guimin
    He, Binghao
    Yu, Bowen
    Tian, Mei
    Jian, Qifei
    Yu, Xiao
    APPLIED THERMAL ENGINEERING, 2023, 229
  • [9] Thermal performance analysis of supporting column ultra-thin vapor chamber with graded microgroove
    Xie, Xiaozhu
    Cao, Zuo
    He, Jiale
    Liao, Haiqing
    Huang, Yajun
    APPLIED THERMAL ENGINEERING, 2025, 258
  • [10] A new ultra-thin vapor chamber with composite wick for thin electronic products
    Huang, Guangwen
    Liu, Wangyu
    Luo, Yuanqiang
    Li, Yong
    Chen, Hanyin
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2021, 170