CONHyperKGE: Using Contrastive Learning in Hyperbolic Space for Knowledge Graph Embedding

被引:0
|
作者
Gao, Mandeng [1 ]
Tian, Shengwei [1 ]
Yu, Long [1 ]
机构
[1] Xinjiang Univ, Sch Software, Urumqi, Xinjiang Uygur, Peoples R China
基金
中国国家自然科学基金;
关键词
Knowledge graph; hyperbolic space embedding; knowledge graph embedding; contrastive learning;
D O I
10.1142/S0218001424510054
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The embedding of Knowledge Graphs (KGs) in hyperbolic space has recently received great attention in the field of deep learning because it can provide more accurate and concise representations of hierarchical structures compared to Euclidean spaces and complex spaces. Although hyperbolic space embeddings have shown significant improvements over Euclidean spaces and complex space embeddings in handling the task of KG embedding, they still face challenges related to the uneven distribution and insufficient alignment of high-dimensional sparse data. To address this issue, we propose the CONHyperKGE model, which leverages contrastive learning to optimize the embedding distribution in hyperbolic space. This approach enables better capture of hierarchical structures, improved handling of symmetry, and enhanced treatment of sparse matrices. Our proposed method is evaluated on four standard KG Embedding (KGE) datasets: WN18RR, FB15k-237, Kinship, and UMLS. After extensive experimental verification, our method has improved its performance on all four datasets. Notably, on the low-dimensional Kinship dataset, our method achieves an average Mean Reciprocal Rank (MRR) improvement of 2% over the original method, while on the high-dimensional WN18RR dataset, an average MRR improvement of 1% is observed compared to the original method.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] TCKGE: Transformers with contrastive learning for knowledge graph embedding
    Zhang, Xiaowei
    Fang, Quan
    Hu, Jun
    Qian, Shengsheng
    Xu, Changsheng
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2022, 11 (04) : 589 - 597
  • [2] Contrastive Predictive Embedding for learning and inference in knowledge graph
    Liu, Chen
    Wei, Zihan
    Zhou, Lixin
    Knowledge-Based Systems, 2025, 307
  • [3] TCKGE: Transformers with contrastive learning for knowledge graph embedding
    Xiaowei Zhang
    Quan Fang
    Jun Hu
    Shengsheng Qian
    Changsheng Xu
    International Journal of Multimedia Information Retrieval, 2022, 11 : 589 - 597
  • [4] Hyperbolic Knowledge Graph Embedding with Logical Pattern Learning
    Li, Weidong
    Peng, Rong
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [5] Knowledge graph completion method based on hyperbolic representation learning and contrastive learning
    Zhang, Xiaodong
    Wang, Meng
    Zhong, Xiuwen
    An, Feixu
    EGYPTIAN INFORMATICS JOURNAL, 2023, 24 (04)
  • [6] Federated knowledge graph completion via embedding-contrastive learning
    Chen, Mingyang
    Zhang, Wen
    Yuan, Zonggang
    Jia, Yantao
    Chen, Huajun
    KNOWLEDGE-BASED SYSTEMS, 2022, 252
  • [7] KGTS: Contrastive Trajectory Similarity Learning over Prompt Knowledge Graph Embedding
    Chen, Zhen
    Zhang, Dalin
    Feng, Shanshan
    Chen, Kaixuan
    Chen, Lisi
    Han, Peng
    Shang, Shuo
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 8, 2024, : 8311 - 8319
  • [8] Improved Collaborative Recommendation Model: Integrating Knowledge Embedding and Graph Contrastive Learning
    Jiang, Liwei
    Yan, Guanghui
    Luo, Hao
    Chang, Wenwen
    ELECTRONICS, 2023, 12 (20)
  • [9] Multi-hop Knowledge Graph Reasoning Based on Hyperbolic Knowledge Graph Embedding and Reinforcement Learning
    Zhou, Xingchen
    Wang, Peng
    Luo, Qiqing
    Pan, Zhe
    PROCEEDINGS OF THE 10TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE GRAPHS (IJCKG 2021), 2021, : 1 - 9
  • [10] SimRE: Simple contrastive learning with soft logical rule for knowledge graph embedding
    Zhang, Dong
    Rong, Zhe
    Xue, Chengyuan
    Li, Guanyu
    INFORMATION SCIENCES, 2024, 661