Sentiment Analysis withWeighted Graph Convolutional Networks

被引:0
|
作者
Meng, Fanyu [1 ]
Feng, Junlan [1 ]
Yin, Danping [1 ]
Chen, Si [1 ]
Hu, Min [1 ]
机构
[1] China Mobile Res Inst, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Syntactic information is essential for both sentiment analysis(SA) and aspect-based sentiment analysis(ABSA). Previous work has already achieved great progress utilizing Graph Convolutional Network(GCN) over dependency tree of a sentence. However, these models do not fully exploit the syntactic information obtained from dependency parsing such as the diversified types of dependency relations. The message passing process of GCN should be distinguished based on these syntactic information. To tackle this problem, we design a novel weighted graph convolutional network(WGCN) which can exploit rich syntactic information based on the feature combination. Furthermore, we utilize BERT instead of BiLSTM to generate contextualized representations as inputs for GCN and present an alignment method to keep word-level dependencies consistent with wordpiece unit of BERT. With our proposal, we are able to improve the stateof-the-art on four ABSA tasks out of six and two SA tasks out of three.
引用
下载
收藏
页码:586 / 595
页数:10
相关论文
共 50 条
  • [1] Modeling Tweet Dependencies with Graph Convolutional Networks for Sentiment Analysis
    Keramatfar, Abdalsamad
    Amirkhani, Hossein
    Bidgoly, Amir Jalaly
    COGNITIVE COMPUTATION, 2022, 14 (06) : 2234 - 2245
  • [2] Modeling Tweet Dependencies with Graph Convolutional Networks for Sentiment Analysis
    Abdalsamad Keramatfar
    Hossein Amirkhani
    Amir Jalaly Bidgoly
    Cognitive Computation, 2022, 14 : 2234 - 2245
  • [3] Sentiment interaction and multi-graph perception with graph convolutional networks for aspect-based sentiment analysis
    Lu, Qiang
    Sun, Xia
    Sutcliffe, Richard
    Xing, Yaqiong
    Zhang, Hao
    KNOWLEDGE-BASED SYSTEMS, 2022, 256
  • [4] Multiple graph convolutional networks for aspect-based sentiment analysis
    Yuting Ma
    Rui Song
    Xue Gu
    Qiang Shen
    Hao Xu
    Applied Intelligence, 2023, 53 : 12985 - 12998
  • [5] Multiple graph convolutional networks for aspect-based sentiment analysis
    Ma, Yuting
    Song, Rui
    Gu, Xue
    Shen, Qiang
    Xu, Hao
    APPLIED INTELLIGENCE, 2023, 53 (10) : 12985 - 12998
  • [6] RGCN: Recurrent Graph Convolutional Networks for Target-Dependent Sentiment Analysis
    Chen, Junjie
    Hou, Hongxu
    Gao, Jing
    Ji, Yatu
    Bai, Tiangang
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2019, PT I, 2019, 11775 : 667 - 675
  • [7] Graph Convolutional Networks with Structural Attention Model for Aspect Based Sentiment Analysis
    Chen, Junjie
    Hou, Hongxu
    Ji, Yatu
    Gao, Jing
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [8] Modelling Context with Graph Convolutional Networks for Aspect-based Sentiment Analysis
    Zhang, Maoyuan
    Zhang, Jieqiong
    Liu, Lisha
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 194 - 200
  • [9] Interactive Double Graph Convolutional Networks for Aspect-based Sentiment Analysis
    Wang, Xue
    Liu, Peiyu
    Zhu, Zhenfang
    Lu, Ran
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [10] Graph Convolutional Networks with POS Gate for Aspect-Based Sentiment Analysis
    Kim, Dahye
    Kim, YoungJin
    Jeong, Young-Seob
    APPLIED SCIENCES-BASEL, 2022, 12 (19):