Efficient Converted Spiking Neural Network for 3D and 2D Classification

被引:0
|
作者
Lan, Yuxiang [1 ]
Zhang, Yachao [2 ]
Ma, Xu [3 ]
Qu, Yanyun [1 ]
Fu, Yun [3 ]
机构
[1] Xiamen Univ, Sch Informat, Xiamen, Peoples R China
[2] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Beijing, Peoples R China
[3] Northeastern Univ, Dept ECE, Boston, MA 02115 USA
基金
中国博士后科学基金;
关键词
MODEL;
D O I
10.1109/ICCV51070.2023.00845
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spiking Neural Networks (SNNs) have attracted enormous research interest due to their low-power and biologically plausible nature. Existing ANN-SNN conversion methods can achieve lossless conversion by converting a well-trained Artificial Neural Network (ANN) into an SNN. However, converted SNN requires a large amount of time steps to achieve competitive performance with the well-trained ANN, which means a large latency. In this paper, we propose an efficient unified ANN-SNN conversion method for point cloud classification and image classification to significantly reduce the time step to meet the fast and lossless ANN-SNN transformation. Specifically, we first adaptively adjust the threshold according to the activation state of spiking neurons, ensuring a certain proportion of spiking neurons are activated at each time step to reduce the time for accumulation of membrane potential. Next, we use an adaptive firing mechanism to enlarge the range of spiking output, getting more discrimination features in short time steps. Extensive experimental results on challenging point cloud and image datasets demonstrate that the suggested approach significantly outmatches state-of-the-art ANN-SNN conversion based methods.
引用
收藏
页码:9177 / 9186
页数:10
相关论文
共 50 条
  • [1] Synergistic 2D/3D Convolutional Neural Network for Hyperspectral Image Classification
    Yang, Xiaofei
    Zhang, Xiaofeng
    Ye, Yunming
    K Lau, Raymond Y.
    Lu, Shijian
    Li, Xutao
    Huang, Xiaohui
    REMOTE SENSING, 2020, 12 (12)
  • [2] EEG Classification of Physiological Conditions in 2D/3D Environments Using Neural Network
    Mumtaz, Wajid
    Xia, Likun
    Malik, Aamir Saeed
    Yasin, Mohd Azhar Mohd
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 4235 - 4238
  • [3] A 2D/3D Integrated Network for Breast Tumor Classification
    Chen, X.
    Wang, X.
    Lv, J.
    Zhou, Z.
    MEDICAL PHYSICS, 2022, 49 (06) : E797 - E797
  • [4] Neural Network adaptability from 2D to 3D Chess
    Cristea, Daniela-Maria
    Zsigmond, Imre
    Sima, Ioan
    Trofin, Bogdan-Gabriel
    Kovacs, Robert
    IEEE 13TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI 2019), 2019, : 201 - 209
  • [5] DEEP LEARNING ON POINT CLOUD FOR 3D CLASSIFICATION BASED ON SPIKING NEURAL NETWORK
    Zhang Silin
    2022 19TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2022,
  • [6] Steganographic Data Hiding In Automatic Converted 3D image From 2D And 2D To 3D Video Conversion
    Sariga, N. P.
    Sajitha, A. S.
    2015 INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION, EMBEDDED AND COMMUNICATION SYSTEMS (ICIIECS), 2015,
  • [7] 2D and 3D Face Recognition Using Convolutional Neural Network
    Hu, Huiying
    Shah, Syed Afaq Ali
    Bennamoun, Mohammed
    Molton, Michael
    TENCON 2017 - 2017 IEEE REGION 10 CONFERENCE, 2017, : 133 - 138
  • [8] A Hybrid 2D and 3D Convolution Neural Network for Stereo Matching
    Zeng, Xuan
    Li, Yewen
    Chen, Ziqian
    Zhu, Liping
    2018 21ST IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE 2018), 2018, : 152 - 156
  • [9] 2D Convolutional Neural Networks for 3D Digital Breast Tomosynthesis Classification
    Zhang, Yu
    Wang, Xiaoqin
    Blanton, Hunter
    Liang, Gongbo
    Xing, Xin
    Jacobs, Nathan
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 1013 - 1017
  • [10] Evolutionary Neural Architecture Search for 2D and 3D Medical Image Classification
    Ali, Muhammad Junaid
    Moalic, Laurent
    Essaid, Mokhtar
    Idoumghar, Lhassane
    COMPUTATIONAL SCIENCE, ICCS 2024, PT II, 2024, 14833 : 131 - 146