Averaging Estimation for Instrumental Variables Quantile Regression

被引:0
|
作者
Liu, Xin [1 ]
机构
[1] Washington State Univ, Sch Econ Sci, 255 E Main St Pullman, Pullman, WA 99163 USA
关键词
MOMENT SELECTION PROCEDURES; GMM; MODEL;
D O I
10.1111/obes.12612
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper proposes two averaging estimation methods to improve the finite-sample efficiency of the instrumental variables quantile regression (IVQR) estimator. I propose using the usual quantile regression for averaging to take advantage of cases when endogeneity is not too strong. I also propose using two-stage least squares to take advantage of cases when heterogeneity is not too strong. The first averaging method is to apply a recent proposal for GMM averaging to the IVQR model based on this proposed intuition. My implementation involves many computational considerations and builds on recent developments in the quantile literature. The second averaging method is a new bootstrap model averaging method that directly averages among IVQR, quantile regression, and two-stage least squares estimators. More specifically, I find the optimal weights from bootstrapped samples and then apply the bootstrap-optimal weights to the original sample. The bootstrap method is simpler to compute and generally performs better in simulations, but uniform dominance results have not been formally proved. Simulation results demonstrate that in the multiple-regressors/instruments case, both the GMM averaging and bootstrap estimators have uniformly smaller risk than the IVQR estimator across data-generating processes with a variety of combinations of different endogeneity levels and heterogeneity levels.
引用
收藏
页码:1290 / 1312
页数:23
相关论文
共 50 条
  • [1] Nonparametric instrumental variables estimation of a quantile regression model
    Horowitz, Joel L.
    Lee, Sokbae
    [J]. ECONOMETRICA, 2007, 75 (04) : 1191 - 1208
  • [2] Smoothed instrumental variables quantile regression
    Kaplan, David M.
    [J]. STATA JOURNAL, 2022, 22 (02): : 379 - 403
  • [3] k-Class instrumental variables quantile regression
    Kaplan, David M.
    Liu, Xin
    [J]. EMPIRICAL ECONOMICS, 2024, 67 (01) : 111 - 141
  • [4] SMOOTHED ESTIMATING EQUATIONS FOR INSTRUMENTAL VARIABLES QUANTILE REGRESSION
    Kaplan, David M.
    Sun, Yixiao
    [J]. ECONOMETRIC THEORY, 2017, 33 (01) : 105 - 157
  • [5] Linear instrumental variables model averaging estimation
    Martins, Luis F.
    Gabriel, Vasco J.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 : 709 - 724
  • [6] Composite quantile regression estimation of linear error-in-variable models using instrumental variables
    Yang, Weiming
    Yang, Yiping
    [J]. METRIKA, 2020, 83 (01) : 1 - 16
  • [7] Composite quantile regression estimation of linear error-in-variable models using instrumental variables
    Weiming Yang
    Yiping Yang
    [J]. Metrika, 2020, 83 : 1 - 16
  • [8] A first-stage representation for instrumental variables quantile regression
    Alejo, Javier
    Galvao, Antonio F.
    Montes-Rojas, Gabriel
    [J]. ECONOMETRICS JOURNAL, 2023, 26 (03): : 350 - 377
  • [9] Instrumental variables estimation of fuzzy regression models
    Shvedov, Alexey S.
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (06) : 5457 - 5462
  • [10] First-stage analysis for instrumental-variables quantile regression
    Alejo, Javier
    Galvao, Antonio F.
    Montes-Rojas, Gabriel
    [J]. STATA JOURNAL, 2024, 24 (02): : 273 - 286