Using algorithmic game theory to improve supervised machine learning: A novel applicability approach in flood susceptibility mapping

被引:0
|
作者
Ali Nasiri Khiavi
Mehdi Vafakhah
机构
[1] Tarbiat Modares University,Department of Watershed Management Engineering, Faculty of Natural Resources and Marine Sciences
关键词
Artificial Intelligence (AI); Flood modeling; Geospatial modeling; Multi-Criteria Decision Making (MCDM); Python programming language;
D O I
10.1007/s11356-024-34691-y
中图分类号
学科分类号
摘要
This study was carried out with the aim of applying Condorcet and Borda scoring algorithms based on Game Theory (GT) to determine flood points and Flood Susceptibility Mapping (FSM) based on Machine Learning Algorithms (MLA) including Random Forest (RF), Support Vector Regression (SVR), Support Vector Machine (SVM), and K-Nearest Neighbors (KNN) in the Cheshmeh-Kileh watershed, Iran. Therefore, first, FS conditioning factors including Aspect (As), Elevation (El), Euclidean distance (Euc), Forest (F), NDVI, Precipitation (P), Plan Curvature (PlC), Profile Curvature (PrC), Residential (Re), Rangeland (Rl), Slope (Sl), Stream Power Index (SPI), Topographic Position Index (TPI), and Topographic Wetness Index (TWI) were quantified in each Sub-Watershed (SW). Based on this, flood and non-flood points were identified based on both GT algorithms. In the following, MLAs including Random Forest (RF), Support Vector Regression (SVR), Support Vector Machines (SVM), and K-Nearest Neighbors (KNN) were used for the distributional mapping of FS. Finally, based on optimal conjunct approaches, FS maps were presented in the study watershed. Based on the results, among the conjunct algorithms in FS classification, RF-Condorcet and RF-Borda models were selected as the most optimal MLA-GT hybrid models. The upstream SWs were highly susceptible. Also, the effectiveness of NDVI and forest conditioning factors in each classification approach was high. The similarity of SW prioritization based on Condorcet algorithm with RF-Condorcet algorithm was about 86.70%. Meanwhile, the degree of similarity in RF-Borda conjunct algorithm was around 73.33%. These results showed that Condorcet algorithm had an optimal classification compared to Borda scoring algorithm.
引用
收藏
页码:52740 / 52757
页数:17
相关论文
共 50 条
  • [1] Integration of hard and soft supervised machine learning for flood susceptibility mapping
    Andaryani, Soghra
    Nourani, Vahid
    Haghighi, Ali Torabi
    Keesstra, Saskia
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 291
  • [2] Novel ensemble machine learning models in flood susceptibility mapping
    Prasad, Pankaj
    Loveson, Victor Joseph
    Das, Bappa
    Kotha, Mahender
    [J]. GEOCARTO INTERNATIONAL, 2022, 37 (16) : 4571 - 4593
  • [3] Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping
    Shafizadeh-Moghadam, Hossein
    Valavi, Roozbeh
    Shahabi, Himan
    Chapi, Kamran
    Shirzadi, Ataollah
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2018, 217 : 1 - 11
  • [4] Flash flood susceptibility mapping based on catchments using an improved Blending machine learning approach
    Yin, Yongqiang
    Zhang, Xiaoxiang
    Guan, Zheng
    Chen, Yuehong
    Liu, Changjun
    Yang, Tao
    [J]. HYDROLOGY RESEARCH, 2023, 54 (04): : 557 - 579
  • [5] Integration of Watershed eco-physical health through Algorithmic game theory and supervised machine learning
    Khiavi, Ali Nasiri
    Tavoosi, Mohammad
    Khodamoradi, Hamid
    Kuriqi, Alban
    [J]. GROUNDWATER FOR SUSTAINABLE DEVELOPMENT, 2024, 26
  • [6] Comparison of Machine Learning Algorithms for Flood Susceptibility Mapping
    Seydi, Seyd Teymoor
    Kanani-Sadat, Yousef
    Hasanlou, Mahdi
    Sahraei, Roya
    Chanussot, Jocelyn
    Amani, Meisam
    [J]. REMOTE SENSING, 2023, 15 (01)
  • [7] Assessment of urban flood susceptibility using semi-supervised machine learning model
    Zhao, Gang
    Pang, Bo
    Xu, Zongxue
    Peng, Dingzhi
    Xu, Liyang
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 659 : 940 - 949
  • [8] A novel hybrid approach based on a swarm intelligence optimized extreme learning machine for flash flood susceptibility mapping
    Dieu Tien Bui
    Phuong-Thao Thi Ngo
    Tien Dat Pham
    Jaafari, Abolfazl
    Nguyen Quang Minh
    Pham Viet Hoa
    Samui, Pijush
    [J]. CATENA, 2019, 179 : 184 - 196
  • [9] Flash flood susceptibility mapping using stacking ensemble machine learning models
    Ilia, Loanna
    Tsangaratos, Paraskevas
    Tzampoglou, Ploutarchos
    Chen, Wei
    Hong, Haoyuan
    [J]. GEOCARTO INTERNATIONAL, 2022, 37 (27) : 15010 - 15036
  • [10] Geospatial modeling using hybrid machine learning approach for flood susceptibility
    Bibhu Prasad Mishra
    Dillip Kumar Ghose
    Deba Prakash Satapathy
    [J]. Earth Science Informatics, 2022, 15 : 2619 - 2636