Identification of diagnostic biomarkers and immune cell infiltration in coronary artery disease by machine learning, nomogram, and molecular docking

被引:1
|
作者
Jiang, Xinyi [1 ,2 ,3 ]
Luo, Yuanxi [1 ,2 ,3 ]
Li, Zeshi [1 ,2 ,3 ]
Zhang, He [1 ,2 ,3 ]
Xu, Zhenjun [3 ]
Wang, Dongjin [1 ,2 ,3 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Nanjing Drum Tower Hosp, Peking Union Med Coll, Dept Cardiothorac Surg,Grad Sch, Nanjing, Peoples R China
[2] Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Dept Rheumatol, Beijing, Peoples R China
[3] Affiliated Hosp Nanjing Univ, Nanjing Drum Tower Hosp, Med Sch, Dept Cardiothorac Surg, Nanjing, Peoples R China
来源
FRONTIERS IN IMMUNOLOGY | 2024年 / 15卷
基金
中国国家自然科学基金;
关键词
coronary artery disease; diagnostic biomarkers; machine learning; nomogram; immune cell infiltration; molecular docking; ATHEROSCLEROSIS; NEPHROTOXICITY; CEPHALORIDINE; HOMOCYSTEINE; APOPTOSIS; CSF3R;
D O I
10.3389/fimmu.2024.1368904
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background Coronary artery disease (CAD) is still a lethal disease worldwide. This study aims to identify clinically relevant diagnostic biomarker in CAD and explore the potential medications on CAD.Methods GSE42148, GSE180081, and GSE12288 were downloaded as the training and validation cohorts to identify the candidate genes by constructing the weighted gene co-expression network analysis. Functional enrichment analysis was utilized to determine the functional roles of these genes. Machine learning algorithms determined the candidate biomarkers. Hub genes were then selected and validated by nomogram and the receiver operating curve. Using CIBERSORTx, the hub genes were further discovered in relation to immune cell infiltrability, and molecules associated with immune active families were analyzed by correlation analysis. Drug screening and molecular docking were used to determine medications that target the four genes.Results There were 191 and 230 key genes respectively identified by the weighted gene co-expression network analysis in two modules. A total of 421 key genes found enriched pathways by functional enrichment analysis. Candidate immune-related genes were then screened and identified by the random forest model and the eXtreme Gradient Boosting algorithm. Finally, four hub genes, namely, CSF3R, EED, HSPA1B, and IL17RA, were obtained and used to establish the nomogram model. The receiver operating curve, the area under curve, and the calibration curve were all used to validate the accuracy and usefulness of the diagnostic model. Immune cell infiltrating was examined, and CAD patients were then divided into high- and low-expression groups for further gene set enrichment analysis. Through targeting the hub genes, we also found potential drugs for anti-CAD treatment by using the molecular docking method.Conclusions CSF3R, EED, HSPA1B, and IL17RA are potential diagnostic biomarkers for CAD. CAD pathogenesis is greatly influenced by patterns of immune cell infiltration. Promising drugs offers new prospects for the development of CAD therapy.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Identification of immune cell infiltration and diagnostic biomarkers in unstable atherosclerotic plaques by integrated bioinformatics analysis and machine learning
    Wang, Jing
    Kang, Zijian
    Liu, Yandong
    Li, Zifu
    Liu, Yang
    Liu, Jianmin
    FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [2] Identification of diagnostic biomarkers of and immune cell infiltration analysis in bovine respiratory disease
    Sheng, Hui
    Zhang, Junxing
    Shi, Xiaodi
    Zhang, Long
    Yao, Dawei
    Zhang, Peipei
    Li, Yupeng
    Zhang, Jinlong
    Guo, Xiaofei
    Zhang, Xiaosheng
    FRONTIERS IN VETERINARY SCIENCE, 2025, 12
  • [3] Identification of hub genes and their correlation with immune infiltration in coronary artery disease through bioinformatics and machine learning methods
    Huang, Ke-Ke
    Zheng, Hui-Lei
    Li, Shuo
    Zeng, Zhi-Yu
    JOURNAL OF THORACIC DISEASE, 2022, 14 (07) : 2621 - 2634
  • [4] Use of Machine Learning for the Identification and Validation of Immunogenic Cell Death Biomarkers and Immunophenotypes in Coronary Artery Disease
    Zhang, Yan-jiao
    Huang, Chao
    Zu, Xiu-guang
    Liu, Jin-ming
    Li, Yong-jun
    JOURNAL OF INFLAMMATION RESEARCH, 2024, 17 : 223 - 249
  • [5] Combining bioinformatics and machine learning to identify diagnostic biomarkers of TB associated with immune cell infiltration
    Ding, Shoupeng
    Yi, Xiaomei
    Gao, Jinghua
    Huang, Chunxiao
    Zhou, Yuyang
    Yang, Yimei
    Cai, Zihan
    TUBERCULOSIS, 2024, 149
  • [6] Analysis and validation of diagnostic biomarkers and immune cell infiltration characteristics in Crohn's disease by integrating bioinformatics and machine learning
    Ren, Xiao-Jun
    Zhang, Man-Ling
    Shi, Zhao-Hong
    Zhu, Pei-Pei
    AUTOIMMUNITY, 2024, 57 (01)
  • [7] Identification of diagnostic gene biomarkers and immune infiltration in patients with diabetic kidney disease using machine learning strategies and bioinformatic analysis
    Fu, Shaojie
    Cheng, Yanli
    Wang, Xueyao
    Huang, Jingda
    Su, Sensen
    Wu, Hao
    Yu, Jinyu
    Xu, Zhonggao
    FRONTIERS IN MEDICINE, 2022, 9
  • [8] Immune Cell Infiltration Analysis Based on Bioinformatics Reveals Novel Biomarkers of Coronary Artery Disease
    He, Tianwen
    Muhetaer, Muheremu
    Wu, Jiahe
    Wan, Jingjing
    Hu, Yushuang
    Zhang, Tong
    Wang, Yunxiang
    Wang, Qiongxin
    Cai, Huanhuan
    Lu, Zhibing
    JOURNAL OF INFLAMMATION RESEARCH, 2023, 16 : 3169 - 3184
  • [9] Identification of Potential Ferroptosis Biomarkers and Analysis of Immune Cell Infiltration in Psoriasis Using Machine Learning
    Wu, Xiaoyan
    Sun, Yuzhe
    Wei, Shuyi
    Hu, Huoyou
    Yang, Bin
    CLINICAL COSMETIC AND INVESTIGATIONAL DERMATOLOGY, 2024, 17 : 1281 - 1295
  • [10] Bioinformatic analysis and machine learning to identify the diagnostic biomarkers and immune infiltration in adenomyosis
    Liu, Dan
    Yin, Xiangjie
    Guan, Xiaohong
    Li, Kunming
    FRONTIERS IN GENETICS, 2023, 13