Model-plant mismatch detection for a plant under Model Predictive Control: A grinding mill circuit case study

被引:0
|
作者
Mittermaier, Heinz K. [1 ]
le Roux, Johan D. [1 ]
Olivier, Laurentz E. [1 ,2 ]
Craig, Ian K. [1 ]
机构
[1] Univ Pretoria, Dept Elect Elect & Comp Engn, Pretoria, South Africa
[2] Analyte Control, Pretoria, South Africa
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
基金
新加坡国家研究基金会;
关键词
Controller performance monitoring; grinding mill circuit; model predictive control; model-plant mismatch; process performance monitoring; DIAGNOSIS; FRAMEWORK; SYSTEMS;
D O I
10.1016/j.ifacol.2023.10.566
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This articles investigates two different techniques of identifying model-plant mismatch for a grinding mill circuit under model predictive control. A previous attempt at model-plant mismatch detection for a grinding mill, in the form of a partial cross correlation analysis, is used as a benchmark for model-plant mismatch detection and degraded sub-model isolation. This is followed by an investigation of the plant model ratio technique applied to the same system. The plant model ratio technique is able to isolate the sub-model containing a mismatch as well as detect the specific parameter in a first-order-plus-time-delay model responsible for the mismatch. A simulation study is used to quantify and compare the results between the two model-plant mismatch detection methodologies. The results indicate plant model ratio accurately and timeously detects mismatches in sub-models. This allows for system reidentification or controller adaption to ensure optimal process performance. The advantage above partial cross correlation is the parameter diagnosis within the degraded sub-model coupled with the mismatch direction. Copyright (c) 2023 The Authors.
引用
收藏
页码:11778 / 11783
页数:6
相关论文
共 50 条
  • [1] Model-plant mismatch detection and model update for a run-of-mine ore milling circuit under model predictive control
    Olivier, Laurentz E.
    Craig, Ian K.
    [J]. JOURNAL OF PROCESS CONTROL, 2013, 23 (02) : 100 - 107
  • [2] Model-Plant Mismatch in Fractional Order Model Predictive Control
    Domek, Stefan
    [J]. THEORETICAL DEVELOPMENTS AND APPLICATIONS OF NON-INTEGER ORDER SYSTEMS, 2016, 357 : 281 - 291
  • [3] A Novel Algorithm for Model-Plant Mismatch Detection for Model Predictive Controllers
    Tsai, Y.
    Gopaluni, R. B.
    Marshman, D.
    Chmelyk, T.
    [J]. IFAC PAPERSONLINE, 2015, 48 (08): : 746 - 752
  • [4] Detection of model-plant mismatch in MPC applications
    Badwe, Abhijit S.
    Gudi, Ravindra D.
    Patwardhan, Rohit S.
    Shah, Sirish L.
    Patwardhan, Sachin C.
    [J]. JOURNAL OF PROCESS CONTROL, 2009, 19 (08) : 1305 - 1313
  • [5] Detection of model-plant mismatch in closed-loop control system
    Ling, Dan
    Zheng, Ying
    Zhang, Hong
    Yang, Weidong
    Tao, Bo
    [J]. JOURNAL OF PROCESS CONTROL, 2017, 57 : 66 - 79
  • [6] Model-Plant Mismatch Detection with Support Vector Machines
    Lu, Qiugang
    Gopaluni, R. Bhushan
    Forbes, Michael G.
    Loewen, Philip D.
    Backstrom, Johan U.
    Dumont, Guy A.
    [J]. IFAC PAPERSONLINE, 2017, 50 (01): : 7993 - 7998
  • [7] Detection and diagnosis of model-plant mismatch in multivariable model-based control schemes
    Yerramilli, Suraj
    Tangirala, Arun K.
    [J]. JOURNAL OF PROCESS CONTROL, 2018, 66 : 84 - 97
  • [8] Comparative Performance Analysis of Coordinated Model Predictive Control Schemes in the Presence of Model-Plant Mismatch
    Anand, Abhay
    Samavedham, Lakshminarayanan
    Sundaramoorthy, Sitanandam
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (24) : 8273 - 8285
  • [9] Detection and diagnosis of model-plant mismatch in MIMO systems using plant-model ratio
    Yerramilli, Suraj
    Tangirala, Arun K.
    [J]. IFAC PAPERSONLINE, 2016, 49 (01): : 266 - 271
  • [10] Improved offset-free model predictive control utilizing learned model-plant mismatch map
    Son, Sang Hwan
    Kim, Jong Woo
    Oh, Tae Hoon
    Lee, GiBaek
    Lee, Jong Min
    [J]. IFAC PAPERSONLINE, 2022, 55 (07): : 792 - 797