Probabilistic load forecasting based on quantile regression parallel CNN and BiGRU networks

被引:0
|
作者
Lu, Yuting [1 ]
Wang, Gaocai [2 ]
Huang, Xianfei [1 ]
Huang, Shuqiang [3 ]
Wu, Man [1 ]
机构
[1] Guangxi Univ, Sch Elect Engn, Nanning 530004, Peoples R China
[2] Guangxi Univ, Sch Comp Elect & Informat, Nanning 530004, Peoples R China
[3] Jinan Univ, Coll Cyber Secur, Guangzhou 510632, Peoples R China
基金
中国国家自然科学基金;
关键词
Probabilistic load forecasting; Quantile regression; Deep learning; Whale optimization algorithm; WHALE OPTIMIZATION ALGORITHM; MODEL;
D O I
10.1007/s10489-024-05540-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the dynamic smart grid landscape, accurate probabilistic forecasting of electric load is critical. This paper presents a novel 24-hour-ahead probabilistic load forecasting model by integrating quantile regression with a parallel convolutional neural network (CNN) and bidirectional gated recurrent unit (BiGRU) architecture. Carefully tuning hyperparameters can enhance model performance and generalization capability. Consequently, we propose an improved whale optimization algorithm for automatic hyperparameter tuning of the forecasting model. Case studies demonstrate the proposed method's superior performance over benchmark models in terms of average interval score and pinball loss. In addition, it exhibits valid coverage and tight interval bandwidths. The model provides precise short-term load forecasts to support robust smart grid planning and operations.
引用
收藏
页码:7439 / 7460
页数:22
相关论文
共 50 条
  • [1] Parallel and reliable probabilistic load forecasting via quantile regression forest and quantile determination
    Zhang, Wenjie
    Quan, Hao
    Srinivasan, Dipti
    [J]. ENERGY, 2018, 160 : 810 - 819
  • [2] Embedding based quantile regression neural network for probabilistic load forecasting
    Dahua GAN
    Yi WANG
    Shuo YANG
    Chongqing KANG
    [J]. Journal of Modern Power Systems and Clean Energy, 2018, 6 (02) : 244 - 254
  • [3] Embedding based quantile regression neural network for probabilistic load forecasting
    Gan, Dahua
    Wang, Yi
    Yang, Shuo
    Kang, Chongqing
    [J]. JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2018, 6 (02) : 244 - 254
  • [4] An Improved Quantile Regression Neural Network for Probabilistic Load Forecasting
    Zhang, Wenjie
    Quan, Hao
    Srinivasan, Dipti
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (04) : 4425 - 4434
  • [5] Multivariate Quantile Regression for Short-Term Probabilistic Load Forecasting
    Bracale, Antonio
    Caramia, Pierluigi
    De Falco, Pasquale
    Hong, Tao
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (01) : 628 - 638
  • [6] Probabilistic Hourly Load Forecasting Using Additive Quantile Regression Models
    Sigauke, Caston
    Nemukula, Murendeni Maurel
    Maposa, Daniel
    [J]. ENERGIES, 2018, 11 (09)
  • [7] Probabilistic Load Forecasting via Quantile Regression Averaging on Sister Forecasts
    Liu, Bidong
    Nowotarski, Jakub
    Hong, Tao
    Weron, Rafal
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2017, 8 (02) : 730 - 737
  • [8] Short Time Power Load Probabilistic Forecasting Based on Constrained Parallel-LSTM Neural Network Quantile Regression Mode
    Li, Dan
    Zhang, Yuanhang
    Yang, Baohua
    Wang, Qi
    [J]. Dianwang Jishu/Power System Technology, 2021, 45 (04): : 1356 - 1363
  • [9] Improving Probabilistic Load Forecasting Using Quantile Regression NN With Skip Connections
    Zhang, Wenjie
    Quan, Hao
    Gandhi, Oktoviano
    Rajagopal, Ram
    Tan, Chin-Woo
    Srinivasan, Dipti
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (06) : 5442 - 5450
  • [10] Quantile regression for the qualifying match of GEFCom2017 probabilistic load forecasting
    Ziel, Florian
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2019, 35 (04) : 1400 - 1408