Complete 3-dimensional λ-translators in the Euclidean space R4

被引:2
|
作者
Li, Zhi [1 ,2 ]
Wei, Guoxin [2 ]
Chen, Gangyi [3 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[3] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
关键词
Second fundamental form; lambda-translator; the generalized maximum principle; MEAN-CURVATURE FLOW; SELF-SHRINKERS; SINGULARITIES; SURFACES; SOLITONS;
D O I
10.1142/S1793525321500540
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain the classification theorems for 3-dimensional complete lambda-translators x: M-3 -> R-4 with constant squared norm S of the second fundamental form and constant f(4) in the Euclidean space R-4.
引用
收藏
页码:71 / 124
页数:54
相关论文
共 50 条
  • [1] Classification of complete 3-dimensional self-shrinkers in the Euclidean space R4
    Cheng, Qing-Ming
    Li, Zhi
    Wei, Guoxin
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (04) : 873 - 882
  • [2] Classification of complete 3-dimensional self-shrinkers in the Euclidean space R4
    Qing-Ming Cheng
    Zhi Li
    Guoxin Wei
    Science China Mathematics, 2024, 67 (04) : 873 - 882
  • [3] Complete 3-dimensional A-translators in the Minkowski space R1
    Li, Zhi
    Wei, Guoxin
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2023, 75 (01) : 119 - 150
  • [4] Classification of complete 3-dimensional self-shrinkers in the Euclidean space ℝ4
    Qing-Ming Cheng
    Zhi Li
    Guoxin Wei
    Science China Mathematics, 2024, 67 : 873 - 882
  • [5] On surfaces immersed in Euclidean space R4
    Peng ChiaKuei
    Tang ZiZhou
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (01) : 251 - 256
  • [6] On surfaces immersed in Euclidean space R4
    ChiaKuei Peng
    ZiZhou Tang
    Science in China Series A: Mathematics, 2010, 53 : 251 - 256
  • [7] Classification of noncollapsed translators in R4
    Choi, Kyeongsu
    Haslhofer, Robert
    Hershkovits, Or
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2023, 11 (03) : 563 - 698
  • [8] 3-DIMENSIONAL AFFINE HYPERSURFACES IN R4 WITH PARALLEL CUBIC FORM
    DILLEN, F
    VRANCKEN, L
    NAGOYA MATHEMATICAL JOURNAL, 1991, 124 : 41 - 53
  • [9] Special Curves in 3-Dimensional Euclidean Space
    Yuan Y.
    Li J.
    Liu H.-L.
    Liu, Hui-Li (liuhl@mail.neu.edu.cn), 1669, Northeast University (38): : 1669 - 1672
  • [10] DIFFERENTIATION OF SPINORS IN 3-DIMENSIONAL EUCLIDEAN SPACE
    DODDS, B
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1973, 6 (MAY): : 473 - 480