Instabilities in generic second-order traffic models with relaxation

被引:0
|
作者
Goatin, Paola [1 ]
Rizzo, Alessandra [2 ]
机构
[1] Univ Cote Azur, Inria, CNRS, LJAD, 2004 Route Lucioles,BP 93, F-06902 Sophia Antipolis, France
[2] Univ Studi Messina, Dept Math & Comp Sci Phys Sci & Earth Sci, Viale F Stagno DAlcontres 31, I-98166 Messina, Italy
来源
关键词
Macroscopic traffic flow models; Hyperbolic systems of conservation laws; Relaxation; Sub-characteristic condition; ZERO RELAXATION; KINEMATIC WAVES; FLOW; DISSIPATION; VEHICLES; LIMIT;
D O I
10.1007/s00033-024-02307-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of weak solutions for a class of second-order traffic models with relaxation, without requiring the sub-characteristic stability condition to hold. With the help of numerical simulations, we show how, in this unstable setting, large but bounded oscillations may arise from small perturbations of equilibria, thus reproducing the formation of stop-and-go waves commonly observed in traffic dynamics. An analysis of the corresponding traveling waves completes the study.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] SECOND-ORDER TRAFFIC FLOW MODELS ON NETWORKS
    Goettlich, Simone
    Herty, Michael
    Moutari, Salissou
    Weissen, Jennifer
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2021, 81 (01) : 258 - 281
  • [2] Relaxation Approximations to Second-order Traffic Flow Models by High-resolution Schemes
    Nikolos, I. K.
    Delis, A. I.
    Papageorgiou, M.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [3] High-resolution numerical relaxation approximations to second-order macroscopic traffic flow models
    Delis, A. I.
    Nikolos, I. K.
    Papageorgiou, M.
    [J]. TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2014, 44 : 318 - 349
  • [4] Lagrangian generic second order traffic flow models for node
    Asma Khelifi
    Habib Haj-Salem
    Jean-Patrick Lebacque
    Lotfi Nabli
    [J]. Journal of Traffic and Transportation Engineering(English Edition), 2018, (01) : 14 - 27
  • [5] Lagrangian generic second order traffic flow models for node
    Khelifi, Asma
    Haj-Salem, Habib
    Lebacque, Jean-Patrick
    Nabli, Lotfi
    [J]. JOURNAL OF TRAFFIC AND TRANSPORTATION ENGINEERING-ENGLISH EDITION, 2018, 5 (01) : 14 - 27
  • [6] Second-order models and traffic data from mobile sensors
    Piccoli, Benedetto
    Han, Ke
    Friesz, Terry L.
    Yao, Tao
    Tang, Junqing
    [J]. TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2015, 52 : 32 - 56
  • [7] Coupling conditions for a class of second-order models for traffic flow
    Herty, M.
    Rascle, M.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (02) : 595 - 616
  • [8] Modelling road traffic accidents using macroscopic second-order models of traffic flow
    Moutari, S.
    Herty, M.
    Klein, A.
    Oeser, M.
    Steinauer, B.
    Schleper, V.
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 2013, 78 (05) : 1087 - 1108
  • [9] Intersections Modeling with a class of "second-order" models for vehicular traffic flow
    Herty, M.
    Moutari, S.
    Rascle, M.
    [J]. HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON HYPERBOLIC PROBLEMS, 2008, : 755 - 763
  • [10] Steady-state analysis of second-order traffic models and application to traffic flow control
    Sau, J.
    Monteil, J.
    Billot, R.
    El Faouzi, N-E.
    [J]. TRANSPORTMETRICA B-TRANSPORT DYNAMICS, 2019, 7 (01) : 1444 - 1466