Assessing non-convex value functions for the optimal control of stochastic differential equations

被引:0
|
作者
Levano, Elmer [1 ]
do Val, Joao B. R. [2 ]
Vargas, Alessandro N. [3 ]
机构
[1] Univ Nacl Ingn, Fac Engn Elect & Elect, Av Tupac Amaru 210,Campus UNI Rimac, Lima 15333, Peru
[2] Univ Estadual Campinas, Sch Elect & Comp Engn, UNICAMP, BR-13083852 Campinas, SP, Brazil
[3] Univ Tecnol Fed Parana, UTFPR, Av Alberto Carazzai 1640, BR-86300000 Cornelio Procopio, PR, Brazil
来源
关键词
Optimal control; Stochastic ordering; Stochastic differential equations; Value function; MAXIMUM PRINCIPLE; STABILITY; SYSTEMS; MODEL;
D O I
10.1016/j.rico.2021.100093
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Solving the optimal control of stochastic differential equations (SDEs) using the dynamic programming method requires writing the problem in terms of the so-called value function. This paper presents conditions to assure that the value function is convex away from the origin, a concept that allows the value function be non-convex in a region close to the origin. In contrast, for regions away from the origin, the value function remains convex under some mild conditions. Stochastic ordering is used to prove this result. A numerical example illustrates the potential benefits of our approach.
引用
收藏
页数:7
相关论文
共 50 条