The Price of Active Security in Cryptographic Protocols

被引:0
|
作者
Hazay, Carmit [1 ]
Venkitasubramaniam, Muthuramakrishnan [2 ]
Weiss, Mor [1 ]
机构
[1] Bar Ilan Univ, Ramat Gan, Israel
[2] Univ Rochester, Rochester, NY USA
基金
美国国家科学基金会;
关键词
MULTIPARTY COMPUTATION; 2-PARTY COMPUTATION; OBLIVIOUS TRANSFER; COMBINING BMR; COMPILER; CIRCUIT; HONEST; MPC;
D O I
10.1007/s00145-024-09509-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We construct the first actively-secure Multi-Party Computation (MPC) protocols with an arbitrary number of parties in the dishonest majority setting, for an arbitrary field F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}$$\end{document} with constant communication overhead over the "passive-GMW" protocol (Goldreich, Micali and Wigderson, STOC '87). Our protocols rely on passive implementations of Oblivious Transfer (OT) in the Boolean setting and Oblivious Linear function Evaluation (OLE) in the arithmetic setting. Previously, such protocols were only known over sufficiently large fields (Genkin et al. STOC '14) or a constant number of parties (Ishai et al. CRYPTO '08). Conceptually, our protocols are obtained via a new compiler from a passively-secure protocol for a distributed multiplication functionality FMULT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {F}}}}_{\scriptscriptstyle \textrm{MULT}}$$\end{document}, to an actively-secure protocol for general functionalities. Roughly, FMULT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {F}}}}_{\scriptscriptstyle \textrm{MULT}}$$\end{document} is parameterized by a linear-secret sharing scheme S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {S}}}}$$\end{document}, where it takes S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {S}}}}$$\end{document}-shares of two secrets and returns S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {S}}}}$$\end{document}-shares of their product. We show that our compilation is concretely efficient for sufficiently large fields, resulting in an overhead of 2 when securely computing natural circuits. Our compiler has two additional benefits: (1) It can rely on any passive implementation of FMULT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {F}}}}_{\scriptscriptstyle \textrm{MULT}}$$\end{document}, which, besides the standard implementation based on OT (for Boolean) and OLE (for arithmetic), allows us to rely on implementations based on threshold cryptosystems (Cramer et al. Eurocrypt '01), and (2) it can rely on weaker-than-passive (i.e., imperfect/leaky) implementations, which in some parameter regimes yield actively-secure protocols with overhead less than 2. Instantiating this compiler with an "honest-majority" implementation of FMULT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathcal {F}}}}_{\scriptscriptstyle \textrm{MULT}}$$\end{document}, we obtain the first honest-majority protocol (with up to one-third corruptions) for Boolean circuits with constant communication overhead over the best passive protocol (Damg & aring;rd and Nielsen, CRYPTO '07).
引用
收藏
页数:53
相关论文
共 50 条
  • [1] The Price of Active Security in Cryptographic Protocols
    Hazay, Carmit
    Venkitasubramaniam, Muthuramakrishnan
    Weiss, Mor
    [J]. ADVANCES IN CRYPTOLOGY - EUROCRYPT 2020, PT II, 2020, 12106 : 184 - 215
  • [2] A survey on quantum cryptographic protocols and their security
    Fung, Chi-Hang Fred
    Lo, Hoi-Kwong
    [J]. 2007 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-3, 2007, : 1121 - 1124
  • [3] Security and composition of multiparty cryptographic protocols
    Canetti, R
    [J]. JOURNAL OF CRYPTOLOGY, 2000, 13 (01) : 143 - 202
  • [4] Security and Composition of Multiparty Cryptographic Protocols
    Ran Canetti
    [J]. Journal of Cryptology, 2000, 13 : 143 - 202
  • [5] METHODOLOGY FOR ASSESSING THE SECURITY OF CRYPTOGRAPHIC PROTOCOLS
    Nesterenko, A. Yu
    Semenov, A. M.
    [J]. PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2022, (56): : 33 - 82
  • [6] A SYSTEM FOR DECIDING THE SECURITY OF CRYPTOGRAPHIC PROTOCOLS
    WATANABE, H
    FUJIWARA, T
    KASAMI, T
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1993, E76A (01) : 96 - 103
  • [7] Algebra model and security analysis for cryptographic protocols
    HUAI Jinpeng & LI Xianxian School of Computer
    [J]. Science China(Information Sciences), 2004, (02) : 199 - 220
  • [8] Algebra model and security analysis for cryptographic protocols
    Huai, JP
    Li, XX
    [J]. SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2004, 47 (02): : 199 - 220
  • [9] Cognitive and biologically cryptographic protocols for data security
    Ogiela, Lidia
    Ogiela, Urszula
    [J]. COGNITIVE SYSTEMS RESEARCH, 2019, 56 : 1 - 6
  • [10] On different approaches to establish the security of cryptographic protocols
    Coffey, T
    Dojen, R
    Flanagan, T
    [J]. SAM'03: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SECURITY AND MANAGEMENT, VOLS 1 AND 2, 2003, : 637 - 643