Statistics for heteroscedastic time series extremes

被引:0
|
作者
Buecher, Axel [1 ]
Jennessen, Tobias [1 ]
机构
[1] Heinrich Heine Univ, Dusseldorf, Germany
关键词
Extremal index; kernel estimator; multiplier bootstrap; non-stationary extremes; regular varying time series; WEAK-CONVERGENCE; TAIL PROCESSES; DEPENDENCE; ESTIMATOR; MODELS;
D O I
10.3150/22-BEJ1560
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Einmahl, de Haan and Zhou (2016, Journal of the Royal Statistical Society: Series B, 78(1), 31-51) recently introduced a stochastic model that allows for heteroscedasticity of extremes. The model is extended to the situation where the observations are serially dependent, which is crucial for many practical applications. We prove a local limit theorem for a kernel estimator for the scedasis function, and a functional limit theorem for an estimator for the integrated scedasis function. We further prove consistency of a bootstrap scheme that allows to test for the null hypothesis that the extremes are homoscedastic. Finally, we propose an estimator for the extremal index governing the dynamics of the extremes and prove its consistency. All results are illustrated by Monte Carlo simulations. An important intermediate result concerns the sequential tail empirical process under serial dependence.
引用
收藏
页码:46 / 71
页数:26
相关论文
共 50 条
  • [1] Statistics for Heteroscedastic Time Series Extremes
    Bucher, Axel
    Jennessen, Tobias
    arXiv, 2022,
  • [2] Statistics of heteroscedastic extremes
    Einmahl, John H. J.
    de Haan, Laurens
    Zhou, Chen
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2016, 78 (01) : 31 - 51
  • [3] Convergence of heteroscedastic extremes
    de Haan, Laurens
    STATISTICS & PROBABILITY LETTERS, 2015, 101 : 38 - 39
  • [4] Analysis of the Extremes of SNR Time Series Data Using Extreme Value Statistics
    Nevin, Josh W.
    Savory, Seb J.
    2021 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC), 2021,
  • [5] Trend detection for heteroscedastic extremes
    Aline Mefleh
    Romain Biard
    Clément Dombry
    Zaher Khraibani
    Extremes, 2020, 23 : 85 - 115
  • [6] Trend detection for heteroscedastic extremes
    Mefleh, Aline
    Biard, Romain
    Dombry, Clement
    Khraibani, Zaher
    EXTREMES, 2020, 23 (01) : 85 - 115
  • [7] Causality in extremes of time series
    Bodik, Juraj
    Palus, Milan
    Pawlas, Zbynek
    EXTREMES, 2024, 27 (01) : 67 - 121
  • [8] MODELLING TIME SERIES EXTREMES
    Chavez-Demoulin, V.
    Davison, A. C.
    REVSTAT-STATISTICAL JOURNAL, 2012, 10 (01) : 109 - +
  • [9] Causality in extremes of time series
    Juraj Bodik
    Milan Paluš
    Zbyněk Pawlas
    Extremes, 2024, 27 : 67 - 121
  • [10] Heteroscedastic model of regression-time series
    Research Center of Small Sample Technology, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
    J. Mech. Strength, 2006, 1 (51-54):