A model for the canonical algebras of bimodules type (1,4) over truncated polynomial rings

被引:1
|
作者
Geiss, Christof [1 ]
Reynoso-Mercado, David [1 ,2 ,3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Ciudad Univ, Mexico City 04510, Mexico
[2] Univ Antioquia UdeA, Fac Ciencias Exactas & Nat, Algebra Teoria Numeros & Aplicac ERM ALTENUA, Inst Matemat, Calle 70 52-21, Medellin, Colombia
[3] Univ Antioquia UdeA, Fac Ciencias Exactas & Nat, Algebra UdeA, Inst Matemat, Calle 70 52-21, Medellin, Colombia
来源
关键词
Galois descent; Canonical algebra; Quivers with automorphisms; Regular representations; CATEGORIES;
D O I
10.1007/s40590-024-00663-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C((epsilon))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}(\!(\varepsilon )\!)$$\end{document} be the field of complex Laurent series. We use Galois descent techniques to show that the simple regular representations of the species of type (1,4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1,\, 4)$$\end{document} over C((epsilon))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}(\!(\varepsilon )\!)$$\end{document} are naturally parametrized by the closed points of Spec(C((epsilon))[x])boolean OR(center dot){1,2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Spec}(\mathbb {C}(\!(\varepsilon )\!)[x]){\dot{\cup }}\{1,\,2\}$$\end{document}. Moreover, we provide weak normal forms for those representations. We use our representatives of the simple regular representations to describe the canonical algebras associated to the species of type (1, 4) over C((epsilon))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}(\!(\varepsilon )\!)$$\end{document}. This suggests a model of those algebras in the sense of the work of Geiss et al. (Invent Math 209(1):61-158, 2017; Math Z 295:1245-1277, 2020).
引用
收藏
页数:45
相关论文
共 50 条