Dual maps;
Extended modular group;
Attractors of iterated function systems;
SEPARATION PROPERTIES;
HAUSDORFF DIMENSION;
ENTROPY;
SPECTRUM;
D O I:
10.1007/s11139-024-00904-8
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We describe Gauss-type maps as geometric realizations of certain codes in the monoid of nonnegative matrices in the extended modular group. Each such code, together with an appropriate choice of unimodular intervals in P1R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{P}\,}}<^>1\mathbb {R}$$\end{document}, determines a dual pair of graph-directed iterated function systems, whose attractors contain intervals and constitute the domains of a dual pair of Gauss-type maps. Our framework covers many continued fraction algorithms (such as Farey fractions, Ceiling, Even and Odd, Nearest Integer, & mldr;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ldots $$\end{document}) and provides explicit dual algorithms and characterizations of those quadratic irrationals having a purely periodic expansion.
机构:
Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
Georgia So Univ, Dept Math Sci, Statesboro, GA 30460 USAHunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
Ngai, Sze-Man
Wang, Fei
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R ChinaHunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
Wang, Fei
Dong, Xinhan
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R ChinaHunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China