A Python']Python Toolbox for Data-Driven Aerodynamic Modeling Using Sparse Gaussian Processes

被引:0
|
作者
Valayer, Hugo [1 ]
Bartoli, Nathalie [1 ,2 ]
Castano-Aguirre, Mauricio [1 ,3 ]
Lafage, Remi [1 ,2 ]
Lefebvre, Thierry [1 ,2 ]
Lopez-Lopera, Andres F. [3 ]
Mouton, Sylvain [4 ]
机构
[1] Univ Toulouse, DTIS, ONERA, F-31000 Toulouse, France
[2] Univ Toulouse, Federat ENAC ISAE SUPAERO ONERA, F-31000 Toulouse, France
[3] Univ Polytech Hauts de France, CERAMATHS, F-59313 Valenciennes, France
[4] Off Natl Etud & Rech Aerosp, Direct Souffleries, F-31410 Mauzac, France
关键词
surrogate modeling; sparse methods; variational inference; wind tunnel test; OPTIMIZATION; PREDICTION;
D O I
10.3390/aerospace11040260
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In aerodynamics, characterizing the aerodynamic behavior of aircraft typically requires a large number of observation data points. Real experiments can generate thousands of data points with suitable accuracy, but they are time-consuming and resource-intensive. Consequently, conducting real experiments at new input configurations might be impractical. To address this challenge, data-driven surrogate models have emerged as a cost-effective and time-efficient alternative. They provide simplified mathematical representations that approximate the output of interest. Models based on Gaussian Processes (GPs) have gained popularity in aerodynamics due to their ability to provide accurate predictions and quantify uncertainty while maintaining tractable execution times. To handle large datasets, sparse approximations of GPs have been further investigated to reduce the computational complexity of exact inference. In this paper, we revisit and adapt two classic sparse methods for GPs to address the specific requirements frequently encountered in aerodynamic applications. We compare different strategies for choosing the inducing inputs, which significantly impact the complexity reduction. We formally integrate our implementations into the open-source Python toolbox SMT, enabling the use of sparse methods across the GP regression pipeline. We demonstrate the performance of our Sparse GP (SGP) developments in a comprehensive 1D analytic example as well as in a real wind tunnel application with thousands of training data points.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Data-driven aerodynamic analysis of structures using Gaussian Processes
    Kavrakov, Igor
    McRobie, Allan
    Morgenthal, Guido
    [J]. JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2022, 222
  • [2] Orange: Data Mining Toolbox in Python']Python
    Demsar, Janez
    Curk, Tomaz
    Erjavec, Ales
    Gorup, Crt
    Hocevar, Tomaz
    Milutinovic, Mitar
    Mozina, Martin
    Polajnar, Matija
    Toplak, Marko
    Staric, Anze
    Stajdohar, Miha
    Umek, Lan
    Zagar, Lan
    Zbontar, Jure
    Zitnik, Marinka
    Zupan, Blaz
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 2349 - 2353
  • [3] Toolbox of image processing using the python']python language
    Silva, AG
    Lotufo, RD
    Machado, RC
    Saúde, AV
    [J]. 2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 3, PROCEEDINGS, 2003, : 1049 - 1052
  • [4] GuPPy, a Python']Python toolbox for the analysis of fiber photometry data
    Sherathiya, Venus N.
    Schaid, Michael D.
    Seiler, Jillian L.
    Lopez, Gabriela C.
    Lerner, Talia N.
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [5] PyPore: a python']python toolbox for nanopore sequencing data handling
    Semeraro, Roberto
    Magi, Alberto
    [J]. BIOINFORMATICS, 2019, 35 (21) : 4445 - 4447
  • [6] The Lompe code: A Python']Python toolbox for ionospheric data analysis
    Hovland, A. O.
    Laundal, K. M.
    Reistad, J. P.
    Hatch, S. M.
    Walker, S. J.
    Madelaire, M.
    Ohma, A.
    [J]. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2022, 9
  • [7] GliderTools: A Python']Python Toolbox for Processing Underwater Glider Data
    Gregor, Luke
    Ryan-Keogh, Thomas J.
    Nicholson, Sarah-Anne
    du Plessis, Marcel
    Giddy, Isabelle
    Swart, Sebastiaan
    [J]. FRONTIERS IN MARINE SCIENCE, 2019, 6
  • [8] Orange: Data mining toolbox in python
    Demšar, Janez
    Curk, Tomaz
    Erjavec, Aleš
    Gorup, Črt
    Hočevar, Tomaz
    Milutinovič, Mitar
    Mozina, Martin
    Polajnar, Matija
    Toplak, Marko
    Starič, Anze
    Štajdohar, Miha
    Umek, Lan
    Zagar, Lan
    Zbontar, Jure
    Zitnik, Marinka
    Zupan, Blaz
    [J]. Journal of Machine Learning Research, 2013, 14 : 2349 - 2353
  • [9] PyMVPA: a Python']Python Toolbox for Multivariate Pattern Analysis of fMRI Data
    Hanke, Michael
    Halchenko, Yaroslav O.
    Sederberg, Per B.
    Hanson, Stephen Jose
    Haxby, James V.
    Pollmann, Stefan
    [J]. NEUROINFORMATICS, 2009, 7 (01) : 37 - 53
  • [10] Augmenting Explainable Data-Driven Models in Energy Systems: A Python']Python Framework for Feature Engineering
    Wilfling, Sandra
    [J]. MACHINE LEARNING FOR CYBER-PHYSICAL SYSTEMS, ML4CPS 2023, 2024, : 121 - 129