What does a typical metric space look like?

被引:1
|
作者
Kozma, Gady [1 ]
Meyerovitch, Tom [2 ]
Peled, Ron [3 ]
Samotij, Wojciech [3 ]
机构
[1] Weizmann Inst Sci, Dept Math, IL-76100 Rehovot, Israel
[2] Ben Gurion Univ Negev, Dept Math, IL-8410501 Beer Sheva, Israel
[3] Tel Aviv Univ, Sch Math Sci, IL-6997801 Tel Aviv, Israel
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2024年 / 60卷 / 01期
基金
以色列科学基金会; 欧洲研究理事会;
关键词
Finite metric space; Metric polytope; Random metric space; Entropy method; REGULARITY LEMMA; APPROXIMATION; GRAPHS; SETS;
D O I
10.1214/22-AIHP1262
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The collection M-n of all metric spaces on n points whose diameter is at most 2 can naturally be viewed as a compact (n) convex subset of R-(n 2), known as the metric polytope. In this paper, we study the metric polytope for large n and show that it is close to the cube [1, 2]((n 2)) subset of M-n in the following two senses. First, the volume of the polytope is not much larger than that of the cube, with the following quantitative estimates: {1/6 + o(1) n(3/2) <= log Vol(M-n) <= O (n(3/2)). Second, when sampling a metric space from M-n uniformly at random, the minimum distance is at least 1-n(-c) with high probability, for some c > 0. Our proof is based on entropy techniques. We discuss alternative approaches to estimating the volume of M-n using exchangeability, Szemeredi's regularity lemma, the hypergraph container method, and the Kovari-Sos-Turan theorem.
引用
收藏
页码:11 / 53
页数:43
相关论文
共 50 条