Rearrangements and the Monge-Ampère equations

被引:0
|
作者
Blocki, Zbigniew [1 ]
机构
[1] Uniwersytet Jagiellonski, Inst Matematyki, Lojasiewicza 6, PL-30348 Krakow, Poland
基金
中国国家自然科学基金;
关键词
Symmetrization; Monge-Amp & egrave; re equations; Convex functions; Subharmonic functions; Plurisubharmonic functions; Isoperimetric inequalities; COMPLEX MONGE-AMPERE; DIRICHLET PROBLEM; SYMMETRIZATION;
D O I
10.1007/s00209-024-03557-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the direct counterpart of the Talenti symmetrization estimate for the Laplacian does not hold neither for the complex nor real Monge-Amp & egrave;re equations. We also use this Talenti result to improve some known estimates for subharmonic functions in C,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}},$$\end{document} where the constant depends on the area of the domain, instead of the diameter.
引用
收藏
页数:9
相关论文
共 50 条