An Unsupervised Building Footprints Delineation Approach for Large-Scale LiDAR Point Clouds

被引:0
|
作者
Xu, Xin [1 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Unsupervised learning; LiDAR; building footprint; alpha-shape;
D O I
10.1145/3557915.3565986
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We design a novel unsupervised approach to delineate building footprints on large-scale LiDAR point clouds. By computing an alpha-shape on low-height points, we delineate the building bottoms on the ground. We then use the terrain ruggedness index and vector ruggedness measurement on the entire points to find flat surface areas. Finally, valid building footprints are filtered by checking flat surfaces in the detected bottom areas. Compared to the Artificial Intelligence (AI)-assisted mapping results from Microsoft Building Footprints, the accuracy of the proposed method is 17% higher in the test areas. The simple and effective pipeline makes the proposed method easy to use and suitable for a wider range of applications.
引用
收藏
页码:788 / 791
页数:4
相关论文
共 50 条
  • [1] An Unsupervised Learning Network for Large-Scale LiDAR Point Clouds Registration
    Liu, Jingbin
    Lv, Xuanfan
    Gong, Xiaodong
    Liang, Yifan
    Hyyppa, Juha
    [J]. IEEE Transactions on Vehicular Technology, 2024, 73 (11) : 16187 - 16200
  • [2] Visual Analysis of Large-scale LiDAR Point Clouds
    Luo, Wanbo
    Zhang, Hui
    [J]. PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2015, : 2487 - 2492
  • [3] Scene Adaptive Building Individual Segmentation Based on Large-Scale Airborne LiDAR Point Clouds
    Yang, Wangshan
    Zhang, Yongjun
    Liu, Xinyi
    Gao, Boyong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [4] City3D: Large-Scale Building Reconstruction from Airborne LiDAR Point Clouds
    Huang, Jin
    Stoter, Jantien
    Peters, Ravi
    Nan, Liangliang
    [J]. REMOTE SENSING, 2022, 14 (09)
  • [5] TOWARDS ACCURATE INSTANCE SEGMENTATION IN LARGE-SCALE LIDAR POINT CLOUDS
    Xiang, Binbin
    Peters, Torben
    Kontogianni, Theodora
    Vetterli, Frawa
    Puliti, Stefano
    Astrup, Rasmus
    Schindler, Konrad
    [J]. GEOSPATIAL WEEK 2023, VOL. 10-1, 2023, : 605 - 612
  • [6] FEAR: Feature Extraction for Aerial Registration in large-scale LiDAR point clouds
    Graehling, Quinn
    Asari, Vijayan
    Varney, Nina
    [J]. MULTIMODAL IMAGE EXPLOITATION AND LEARNING 2021, 2021, 11734
  • [7] A novel algorithm for regularization of building footprints using raw LiDAR point clouds
    Ozdemir, Emirhan
    Karsli, Fevzi
    Kavzoglu, Taskin
    Bahadir, Murat
    Yagmahan, Abdullah
    [J]. GEOCARTO INTERNATIONAL, 2022, 37 (25) : 7358 - 7380
  • [8] A Large-Scale Building Unsupervised Extraction Method Leveraging Airborne LiDAR Point Clouds and Remote Sensing Images Based on a Dual P-Snake Model
    Tian, Zeyu
    Fang, Yong
    Fang, Xiaohui
    Ma, Yan
    Li, Han
    [J]. Sensors, 2024, 24 (23)
  • [9] PointMotionNet: Point-Wise Motion Learning for Large-Scale LiDAR Point Clouds Sequences
    Wang, Jun
    Li, Xiaolong
    Sullivan, Alan
    Abbott, Lynn
    Chen, Siheng
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 4418 - 4427
  • [10] Automatic registration of large-scale building point clouds with high outlier rates
    Li, Raobo
    Gan, Shu
    Yuan, Xiping
    Bi, Rui
    Luo, Weidong
    Chen, Cheng
    Zhu, Zhifu
    [J]. Automation in Construction, 2024, 168