ON SOME GEOMETRICAL PROPERTIES of GAUGE THEORIES

被引:0
|
作者
Floratos, E.G. [1 ]
Iliopoulos, J. [2 ]
机构
[1] Physics Department, University of Athens, Greece
[2] Laboratoire de Physique —, ENS, CNRS, PSL Research University, Sorbonne Universités, Paris, France
来源
Acta Physica Polonica B | 2021年 / 52卷 / 06期
关键词
Gages;
D O I
10.5506/APHYSPOLB.52.745
中图分类号
学科分类号
摘要
Gauge theories have become the universal language of fundamental interactions. To this discovery, Martinus J.G. Veltman played a major role. In this short note, dedicated to his memory, we try to understand some of their geometrical properties. We show that a d-dimensional SU(N) Yang–Mills theory can be formulated on a (d + 2)-dimensional space, with the extra two dimensions forming a surface with non-commutative geometry. The non-commutativity parameter is proportional to 1/N and the equivalence is valid to any order in 1/N. We study explicitly the case of the sphere and the torus. © 2021 Jagellonian University. All rights reserved.
引用
收藏
页码:745 / 762
相关论文
共 50 条
  • [1] ON SOME GEOMETRICAL PROPERTIES OF GAUGE THEORIES
    Floratos, E. G.
    Iliopoulos, J.
    [J]. ACTA PHYSICA POLONICA B, 2021, 52 (6-7): : 745 - 762
  • [2] GEOMETRICAL PROPERTIES OF GAUGE-THEORIES
    GRABIAK, M
    MULLER, B
    GREINER, W
    [J]. ANNALS OF PHYSICS, 1986, 172 (01) : 213 - 242
  • [3] SOME PROPERTIES OF RENORMALONS IN GAUGE-THEORIES
    DICECIO, G
    PAFFUTI, G
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1995, 10 (10): : 1449 - 1463
  • [4] GEOMETRICAL ORIGIN OF GAUGE-THEORIES
    GAMBINI, R
    TRIAS, A
    [J]. PHYSICAL REVIEW D, 1981, 23 (02): : 553 - 555
  • [5] GEOMETRICAL ORIGIN OF SUPERSYMMETRIC GAUGE-THEORIES
    CAICEDO, S
    GAMBINI, R
    [J]. PHYSICAL REVIEW D, 1989, 39 (02): : 583 - 587
  • [6] PHYSICAL PRINCIPLES, GEOMETRICAL ASPECTS, AND LOCALITY PROPERTIES OF GAUGE FIELD-THEORIES
    MACK, G
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1981, 29 (04): : 135 - 185
  • [7] GEOMETRICAL STRUCTURE OF FADDEEV-POPOV FIELDS AND INVARIANCE PROPERTIES OF GAUGE-THEORIES
    QUIROS, M
    DEURRIES, FJ
    HOYOS, J
    MAZON, ML
    RODRIGUEZ, E
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (08) : 1767 - 1774
  • [8] Lie algebroids, gauge theories, and compatible geometrical structures
    Kotov, Alexei
    Strobl, Thomas
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2019, 31 (04)
  • [9] Covariant mass and geometrical setup in Euclidean gauge theories
    de Sa, A. R.
    Capri, M. A. L.
    Lemes, V. E. R.
    [J]. PHYSICAL REVIEW D, 2020, 101 (10)
  • [10] THE PATH INTEGRAL FOR GAUGE-THEORIES - A GEOMETRICAL APPROACH
    KUNSTATTER, G
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1992, 9 : 157 - 168