Pseudo-differential operators on local Hardy spaces associated with ball quasi-Banach function spaces

被引:0
|
作者
Chen, Xinyu [1 ]
Tan, Jian [1 ,2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Pseudo-differential operators; Ball quasi-Banach function spaces; Atomic decomposition; Hardy-type spaces; Extrapolation; CONTINUITY; INEQUALITIES; LP;
D O I
10.1007/s11868-024-00633-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a ball quasi-Banach function space on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>{n}$$\end{document} and hX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{X}({\mathbb {R}}<^>{n})$$\end{document} the local Hardy space associated with X. In this paper, under some reasonable assumptions on both X and another ball quasi-Banach function space Y, we aim to derive the boundedness of pseudo-differential operators with symbols in S1,delta-alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S<^>{-\alpha }_{1,\delta }$$\end{document} from hX(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{X}({\mathbb {R}}<^>{n})$$\end{document} to hY(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{Y}({\mathbb {R}}<^>{n})$$\end{document} via applying the extrapolation theorem. In order to prove this result, we also establish the infinite and finite atomic decompositions for the weighted local Hardy space h omega p(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h<^>{p}_{\omega }({\mathbb {R}}<^>{n})$$\end{document} and obtain the mapping property of the above pseudo-differential operators from h omega pp(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h<^>{p}_{\omega <^>{p}}({\mathbb {R}}<^>{n})$$\end{document} to h omega qq(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h<^>{q}_{\omega <^>{q}}({\mathbb {R}}<^>{n})$$\end{document}. Moreover, the above results have a wide range of generality. For example, they can be applied to the variable Lebesgue space, the Lorentz space, the mixed-norm Lebesgue space, the local generalized Herz space and the mixed Herz space.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Hardy spaces for ball quasi-Banach function spaces
    Sawano, Yoshihiro
    Ho, Kwok-Pun
    Yang, Dachun
    Yang, Sibei
    [J]. DISSERTATIONES MATHEMATICAE, 2017, (525) : 1 - 102
  • [2] Applications of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces
    Fan Wang
    Dachun Yang
    Sibei Yang
    [J]. Results in Mathematics, 2020, 75
  • [3] Applications of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces
    Wang, Fan
    Yang, Dachun
    Yang, Sibei
    [J]. RESULTS IN MATHEMATICS, 2020, 75 (01)
  • [4] Anisotropic Hardy spaces associated with ball quasi-Banach function spaces and their applications
    Wang, Zhiran
    Yan, Xianjie
    Yang, Dachun
    [J]. KYOTO JOURNAL OF MATHEMATICS, 2024, 64 (03) : 565 - 634
  • [5] Fourier transform of Hardy spaces associated with ball quasi-Banach function spaces
    Huang, Long
    Chang, Der-Chen
    Yang, Dachun
    [J]. APPLICABLE ANALYSIS, 2022, 101 (11) : 3825 - 3840
  • [6] Product Hardy Spaces Meet Ball Quasi-Banach Function Spaces
    Tan, Jian
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (03)
  • [7] Riesz Transform Characterization of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces
    Fan Wang
    Dachun Yang
    Wen Yuan
    [J]. Journal of Fourier Analysis and Applications, 2023, 29
  • [8] Strongly singular Calderón–Zygmund operators on Hardy spaces associated with ball quasi-Banach function spaces
    Kwok-Pun Ho
    [J]. Analysis and Mathematical Physics, 2023, 13
  • [9] Product Hardy Spaces Meet Ball Quasi-Banach Function Spaces
    Jian Tan
    [J]. The Journal of Geometric Analysis, 2024, 34
  • [10] Riesz Transform Characterization of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces
    Wang, Fan
    Yang, Dachun
    Yuan, Wen
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2023, 29 (05)